Skip to main content

Advertisement

Log in

Zinc Supplementation Attenuates High Glucose-Induced Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) plays an important role in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. But its function in the EMT of the peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the Zn effect on the high glucose (HG)-induced EMT in the rat PMCs (RPMCs) and the underlying molecular mechanisms. We found that Zn supplementation significantly inhibited TGF-β1 and ROS production, and attenuated the HG-induced EMT in the RPMCs, likely through inhibition of MAPK, NF-κB, and TGF-β/Smad pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RPMCs:

Rat peritoneal mesothelial cells

HG:

High glucose

CAPD:

Continuous ambulatory peritoneal dialysis

EMT:

Epithelial-to-mesenchymal transition

MAPK:

Mitogen-activated protein kinase

JNK:

Jun N-terminal kinase

MTT:

3-[4,5-Dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethyl sulfoxide

SMA:

Smooth muscle cell actin

FITC:

Fluorescein isothiocyanate

TPEN:

N,N,N′,N′-Tetrakis(2-pyridylmethyl) ethylenediamine

RIPA:

Radioimmune precipitation assay

TGF:

Transforming growth factor

PBS:

Phosphate-buffered saline

DCF-DA:

2,7-Dichlorofluorescein diacetate

TBS:

Tris-buffered saline

References

  1. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA et al (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 348:403–413

    Article  PubMed  Google Scholar 

  2. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA et al (2005) Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol 16:425–436

    Article  PubMed  CAS  Google Scholar 

  3. Chung SH, Stenvinkel P, Bergstrom J, Lindholm B (2000) Biocompatibility of new peritoneal dialysis solutions: what can we hope to achieve? Perit Dial Int 20(Suppl 5):S57–S67

    PubMed  Google Scholar 

  4. Ha H, Yu MR, Lee HB (2001) High glucose-induced PKC activation mediates TGF-beta 1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney Int 59:463–470

    Article  PubMed  CAS  Google Scholar 

  5. Cendoroglo M, Sundaram S, Jaber BL, Pereira BJ (1998) Effect of glucose concentration, osmolality, and sterilization process of peritoneal dialysis fluids on cytokine production by peripheral blood mononuclear cells and polymorphonuclear cell functions in vitro. Am J Kidney Dis 31:273–282

    Article  PubMed  CAS  Google Scholar 

  6. Yao Q, Pawlaczyk K, Ayala ER, Styszynski A, Breborowicz A, Heimburger O et al (2008) The role of the TGF/Smad signaling pathway in peritoneal fibrosis induced by peritoneal dialysis solutions. Nephron Exp Nephrol 109:e71–e78

    Article  PubMed  CAS  Google Scholar 

  7. Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH et al (2009) HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 20:567–581

    Article  PubMed  CAS  Google Scholar 

  8. Ksiazek K, Breborowicz A, Jorres A, Witowski J (2007) Oxidative stress contributes to accelerated development of the senescent phenotype in human peritoneal mesothelial cells exposed to high glucose. Free Radic Biol Med 42:636–641

    Article  PubMed  CAS  Google Scholar 

  9. Noh H, Kim JS, Han KH, Lee GT, Song JS, Chung SH et al (2006) Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int 69:2022–2028

    Article  PubMed  CAS  Google Scholar 

  10. Vallee BL (1995) The function of metallothionein. Neurochem Int 27:23–33

    Article  PubMed  CAS  Google Scholar 

  11. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi M, Saito H, Higashimoto M, Hibi T (2007) Possible inhibitory effect of oral zinc supplementation on hepatic fibrosis through downregulation of TIMP-1: a pilot study. Hepatol Res 37:405–409

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Zhou Z, Saari JT, Kang YJ (2005) Alcohol-induced myocardial fibrosis in metallothionein-null mice: prevention by zinc supplementation. Am J Pathol 167:337–344

    Article  PubMed  CAS  Google Scholar 

  14. Gandhi MS, Deshmukh PA, Kamalov G, Zhao T, Zhao W, Whaley JT et al (2008) Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol 52:245–252

    Article  PubMed  CAS  Google Scholar 

  15. Van Biervliet S, Vande Velde S, Van Biervliet JP, Robberecht E (2008) The effect of zinc supplements in cystic fibrosis patients. Ann Nutr Metab 52:152–156

    Article  PubMed  Google Scholar 

  16. Mansouri K, Halsted JA, Gombos EA (1970) Zinc, copper, magnesium and calcium in dialyzed and nondialyzed uremic patients. Arch Intern Med 125:88–93

    Article  PubMed  CAS  Google Scholar 

  17. Thomson NM, Stevens BJ, Humphery TJ, Atkins RC (1983) Comparison of trace elements in peritoneal dialysis, hemodialysis, and uremia. Kidney Int 23:9–14

    Article  PubMed  CAS  Google Scholar 

  18. Zima T, Tesar V, Mestek O, Nemecek K (1999) Trace elements in end-stage renal disease. 1. Methodological aspects and the influence of water treatment and dialysis equipment. Blood Purif 17:182–186

    Article  PubMed  CAS  Google Scholar 

  19. Padovese P, Gallieni M, Brancaccio D, Pietra R, Fortaner S, Sabbioni E et al (1992) Trace elements in dialysis fluids and assessment of the exposure of patients on regular hemodialysis, hemofiltration and continuous ambulatory peritoneal dialysis. Nephron 61:442–448

    Article  PubMed  CAS  Google Scholar 

  20. Wang AY, Sea MM, Ip R, Law MC, Chow KM, Lui SF et al (2002) Independent effects of residual renal function and dialysis adequacy on dietary micronutrient intakes in patients receiving continuous ambulatory peritoneal dialysis. Am J Clin Nutr 76:569–576

    PubMed  CAS  Google Scholar 

  21. Hjelle JT, Golinska BT, Waters DC, Steidley KR, McCarroll DR, Dobbie JW (1989) Isolation and propagation in vitro of peritoneal mesothelial cells. Perit Dial Int 9:341–347

    PubMed  CAS  Google Scholar 

  22. Simonian MH, Smith JA (2006) Spectrophotometric and colorimetric determination of protein concentration. Curr Protoc Mol Biol Chapter 10: Unit 10 11A

  23. Liu Q, Mao H, Nie J, Chen W, Yang Q, Dong X et al (2008) Transforming growth factor {beta}1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells. Perit Dial Int 28(Suppl 3):S88–S95

    PubMed  CAS  Google Scholar 

  24. Prasad AS (2008) Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 43:370–377

    Article  PubMed  CAS  Google Scholar 

  25. Bao S, Knoell DL (2006) Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol 291:L1132–L1141

    Article  PubMed  CAS  Google Scholar 

  26. Mengheri E, Nobili F, Vignolini F, Pesenti M, Brandi G, Biavati B (1999) Bifidobacterium animalis protects intestine from damage induced by zinc deficiency in rats. J Nutr 129:2251–2257

    PubMed  CAS  Google Scholar 

  27. Fernandez-Madrid F, Prasad AS, Oberleas D (1973) Effect of zinc deficiency on nucleic acids, collagen, and noncollagenous protein of the connective tissue. J Lab Clin Med 82:951–961

    PubMed  CAS  Google Scholar 

  28. Lee HB, Yu MR, Song JS, Ha H (2004) Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int 65:1170–1179

    Article  PubMed  CAS  Google Scholar 

  29. Oteiza PI, Olin KL, Fraga CG, Keen CL (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr 125:823–829

    PubMed  CAS  Google Scholar 

  30. Ho E, Ames BN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci USA 99:16770–16775

    Article  PubMed  CAS  Google Scholar 

  31. Bao B, Prasad AS, Beck FW, Snell D, Suneja A, Sarkar FH et al (2008) Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res 152:67–80

    Article  PubMed  CAS  Google Scholar 

  32. Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    Article  PubMed  CAS  Google Scholar 

  33. Yamaguchi M, Kishi S (1995) Differential effects of transforming growth factor-beta on osteoclast-like cell formation in mouse marrow culture: relation to the effect of zinc-chelating dipeptides. Peptides 16:1483–1488

    Article  PubMed  CAS  Google Scholar 

  34. Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszen M (2009) Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling. Biochem Pharmacol 78:301–314

    Article  PubMed  CAS  Google Scholar 

  35. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558

    Article  PubMed  CAS  Google Scholar 

  36. Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M (2010) Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12:1383–1430

    Article  PubMed  CAS  Google Scholar 

  37. Auwardt RB, Mudge SJ, Chen CG, Power DA (1998) Regulation of nuclear factor kappaB by corticosteroids in rat mesangial cells. J Am Soc Nephrol 9:1620–1628

    PubMed  CAS  Google Scholar 

  38. Uzzo RG, Leavis P, Hatch W, Gabai VL, Dulin N, Zvartau N et al (2002) Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin Cancer Res 8:3579–3583

    PubMed  CAS  Google Scholar 

  39. Ho E, Quan N, Tsai YH, Lai W, Bray TM (2001) Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood) 226:103–111

    CAS  Google Scholar 

  40. Meerarani P, Reiterer G, Toborek M, Hennig B (2003) Zinc modulates PPARgamma signaling and activation of porcine endothelial cells. J Nutr 133:3058–3064

    PubMed  CAS  Google Scholar 

  41. Kim CH, Kim JH, Lee J, Ahn YS (2003) Zinc-induced NF-kappaB inhibition can be modulated by changes in the intracellular metallothionein level. Toxicol Appl Pharmacol 190:189–196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wang, J., Fan, Y. et al. Zinc Supplementation Attenuates High Glucose-Induced Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells. Biol Trace Elem Res 150, 229–235 (2012). https://doi.org/10.1007/s12011-012-9451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9451-4

Keywords

Navigation