Skip to main content
Log in

210Po Activity and Concentrations of Selected Trace Elements (As, Cd, Cu, Hg, Pb, Zn) in the Muscle Tissue of Tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific Ocean

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Daily mineral intake (DMI) of Cu and Zn, percentage weekly intake (PWI) of As, Cd, Hg, Pb, and doses of 210Po were estimated by using their elemental concentration in muscle of two tuna species and the average tuna consumption in Mexico. Skipjack tuna Katsuwonus pelamis had significantly (p < 0.05) higher levels of As (1.38 μg g−1 dw) and Cu (1.85 μg g−1 dw) than yellowfin tuna Thunnus albacares, whereas Pb concentrations (0.18 μg g−1 dw) were significantly (p < 0.05) higher in T. albacares. The sequence of elemental concentrations in both species was Zn > Cu > As > Hg > Pb > Cd. In T. albacares, concentrations of Cd and Pb in muscle tissue were positively correlated (p < 0.05) with weight of specimens, while Cu was negatively correlated. DMI values were below 10 %. PWI figures (<2 %) are not potentially harmful to human health. 210Po concentration in T. albacares and K. pelamis accounts for 13.5 to 89.7 % of the median individual annual dose (7.1 μSv) from consumption of marine fish and shellfish for the world population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Castro-González MI, Méndez-Armenta M (2008) Heavy metals: implications associated to fish consumption. Environ Toxicol Pharmacol 26:263–271

    Article  PubMed  Google Scholar 

  2. Usydus Z, Szlinder-Richert J, Polak-Juszczak L, Kanderska J, Adamczyk M, Malesa-Ciecwierz M, Ruczynska W (2008) Food of marine origin: between benefits and potential risks. Part I. Canned fish on the Polish market. Food Chem 111:556–563

    Article  CAS  Google Scholar 

  3. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circ 106:2747–2757

    Article  Google Scholar 

  4. Barwick M, Maher W (2003) Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from lake Macquarie estuary, NSW, Australia. Mar Environ Res 56:471–502

    Article  PubMed  CAS  Google Scholar 

  5. Hoffman FL, Hodge VF, Folsom TR (1974) 210Po radioactivity in organs of selected tunas and other marine fish. J Radiat Res 15:103–106

    Article  PubMed  CAS  Google Scholar 

  6. Olson RJ, Boggs CH (1986) Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can J Fish Aquat Sci 439:1760–1775

    Article  Google Scholar 

  7. Sund PN, Blackburn M, Williams F (1981) Tunas and environment in the Pacific ocean: a review. Ocean Mar Biol 19:443–512

    Google Scholar 

  8. Collette BB, Nauen CE (1983) An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. In: FAO Fisheries Synopsis, FAO Species Catalogue, Scombrids of the world. Food and Agriculture Organization of the United Nations, Rome, pp 1–42, vol. 2, no. 125

    Google Scholar 

  9. Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146:548–566

    Article  PubMed  CAS  Google Scholar 

  10. Hoffman FL, Hodge VF, Folsom TR (1974) Polonium radioactivity in certain mid water fish of the eastern temporal Pacific. Health Phys 26(1):65–70

    Article  PubMed  CAS  Google Scholar 

  11. García-Hernández J, Cadena-Cárdenas L, Betancourt-Lozano M, García-de-la-Parra LM, García-Rico L, Márquez-Farías F (2007) Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Toxicol Environ Chem 89(3):507–522

    Article  Google Scholar 

  12. Carvalho FP (2011) Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains. J Environ Radioact 102:462–472

    Article  PubMed  CAS  Google Scholar 

  13. Ruelas-Inzunza J, Vega-Sánchez B, Ramos-Osuna M, Páez-Osuna F (2011) Trophic transfer and dietary mineral intake of essential elements in Thunnus albacares and Katsuwonus pelamis from the eastern Pacific. Biol Trace Elem Res 143:231–239

    Article  PubMed  CAS  Google Scholar 

  14. Moody JR, Lindstrom PM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267

    Article  CAS  Google Scholar 

  15. Allen GR, Bauchot ML, Bellwood DR, Bianchi G (1995) Peces óseos. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (eds) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental Volumen II, Vertebrados Parte 1. FAO, Rome, pp 647–1200

    Google Scholar 

  16. MESL (1997) Standard operating procedures. International Atomic Energy Agency, Monaco

    Google Scholar 

  17. Magalhães MC, Costa V, Menezes GM, Pinho MR, Santos RS, Monteiro LR (2007) Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores. Mar Pollut Bull 54:1654–1662

    Article  PubMed  Google Scholar 

  18. Patra AK, Wagh SS, Jain AK, Hegde AG (2009) Assessment of daily intake of trace elements by Kakrapar adult population through ingestion pathway. Environ Monit Assess 169(1–4):267–272

    PubMed  Google Scholar 

  19. FOCIR (2005) Tendencias internacionales y nacionales del Mercado del atún. Available at http//www.focir.gob.mx/. Accessed 5 Oct 2009

  20. WHO (2003) Nutrition. Retrieved from www.who.int/nut/research1.htm. Accessed 10 Aug 2010

  21. ICRP (International Commission on Radiological Protection) (1991) Annual limits of intake of radionuclides by workers based on the 1990 recommendations. Pergamon Press, New York, Pub. 61

    Google Scholar 

  22. Schaefer KM (1998) Reproductive biology of yellowfin tuna (Thunnus albacares) in the Eastern Pacific Ocean. Inter-Am Trop Tuna Comm 21(5):1–273

    Google Scholar 

  23. Besada V, González JJ, Schultze F (2006) Mercury, cadmium, lead, arsenic, copper and zinc concentrations in albacore, yellowfin tuna and bigeye tuna from the Atlantic Ocean. Cienc Mar 32(2B):439–445

    CAS  Google Scholar 

  24. Bassari A (1994) A study on the trace element concentrations of Thunnus thynnus, Thunnus obesus and Katsuwonus pelamis by means of ICP-AES. Toxicol Environ Chem 44:123–127

    Article  CAS  Google Scholar 

  25. Canli M, Atli G (2003) The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121(1):129–136

    Article  PubMed  CAS  Google Scholar 

  26. Riget F, Dietz R (2000) Temporal trends of cadmium and mercury in Greenland marine biota. Sci Tot Environ 245:49–60

    Article  CAS  Google Scholar 

  27. Wang WX (2002) Interactions of trace metals and different marine food chains. Mar Ecol Prog Ser 243:295–309

    Article  CAS  Google Scholar 

  28. Chen MH, Shih CC, Chou CL, Chou LS (2002) Mercury, organic-mercury and selenium in small cetaceans in Taiwanese waters. Mar Pollut Bull 45:237–245

    Article  PubMed  CAS  Google Scholar 

  29. Rainbow PS, Phillips DJH (1993) Cosmopolitan biomonitors of trace metals. Mar Pollut Bull 26(11):593–601

    Article  CAS  Google Scholar 

  30. Carvalho FP (1988) Polonium-210 in marine organisms: a wide range of natural radiation dose domains. Radiat Prot Dosim 24:113–117

    CAS  Google Scholar 

  31. Pollard D, Ryan TP, Dowdall A (1998) The dose to Irish seafood consumers from 210Po. Radiat Prot Dosim 75(1–4):139–142

    Article  CAS  Google Scholar 

  32. Voegborlo RB, Matsuyama A, Akagi H, Adimado AA, Ephraim JH (2006) Total mercury and methylmercury accumulation in the muscle tissue of frigate (Auxis thazard thazard) and yellow fin (Thunnus albacares) tuna from the Gulf of Guinea, Ghana. Bull Environ Contam Toxicol 76:840–847

    Article  PubMed  CAS  Google Scholar 

  33. Cai Y, Rooker JR, Gill GA, Turner JP (2007) Bioaccumulation of mercury in pelagic fishes from the northern Gulf of Mexico. Can J Fish Aquat Sci 64:458–469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the National Council of Science and Technology through project SEP-CONACYT (no. 57310). We acknowledge technical assistance by G. Ramírez-Reséndiz and M.C. Ramírez-Jáuregui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ruelas-Inzunza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruelas-Inzunza, J., Soto-Jiménez, M.F., Ruiz-Fernández, A.C. et al. 210Po Activity and Concentrations of Selected Trace Elements (As, Cd, Cu, Hg, Pb, Zn) in the Muscle Tissue of Tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific Ocean. Biol Trace Elem Res 149, 371–376 (2012). https://doi.org/10.1007/s12011-012-9450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9450-5

Keywords

Navigation