Skip to main content
Log in

An Organoselenium Drug with Antioxidant Activity and Free Radical Scavenging Capacity In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Organoselenum compounds have been reported to have a wide range of pharmacological properties. Amine-based diselenide, (Z)-N-(4-methylbenzylidene)-1-(2-((2-(1-((E)-4-methyl benzylideneamino)ethyl)phenyl)diselanyl)phenyl)ethanamine ethyl)phenyl) diselanyl) phenyl) ethylimino) methyl)phenol (compound A), and diphenyl diselenide (PhSe)2 were screened for in vitro antioxidant activity. Compound A and (PhSe)2 were tested against sodium nitroprusside (SNP)- and Fe(II)-induced thiobarbituric acid-reactive species (TBARS) in rat brain homogenates. The radical scavenging activity was measured by 1,1-diphenyl-2-picrylhydrazyl assay. Both compounds A and (PhSe)2 decreased Fe(II)- and SNP-stimulated TBARS production in rat brain homogenates. Compound A exhibited the strongest antioxidant activity in the radical scavenging assay, although (PhSe)2, the simplest of the diaryl diselenide, presented no activity. In conclusion, the results of the present investigation indicated that compound A and (PhSe)2 had preventive effects against SNP- and Fe(II)-induced oxidative stress in rat brain homogenates. The amine group in the organic moiety dramatically changed the potency of amine-based diselenide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azbill RD, Mu XJ, BruceKeller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290

    Article  PubMed  CAS  Google Scholar 

  2. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  3. Santamaría A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago-Lopez D, Villeda-Hernandez J, Galvan-Arzates S, Jimenez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86:479–488

    Article  PubMed  Google Scholar 

  4. Morrissey PA, O’Brien NM (1998) Dietary antioxidants in health and disease. Int Dairy J 8:463–472

    Article  CAS  Google Scholar 

  5. Naziroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  CAS  Google Scholar 

  6. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485

    Article  PubMed  CAS  Google Scholar 

  7. Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6285

    Article  PubMed  CAS  Google Scholar 

  8. Parnham MJ, Graf E (1991) Pharmacology of synthetic organic selenium compounds. Progress in Drug Res 36:9–47

    CAS  Google Scholar 

  9. Saito I, Asano T, Sano K, Takakura K, Abe H, Yoshimoto T, Kikuchi H, Ohta T, Ishibashi S (1998) Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery 42:269–277

    Article  PubMed  CAS  Google Scholar 

  10. Kondoh S, Nagasawa S, Kawanishi M, Yamaguchi K, Kajimoto S, Ohta T (1999) Effects of ebselen on cerebral ischemia and reperfusion evaluated by microdialysis. Neurological Res 21:682–686

    CAS  Google Scholar 

  11. Imai H, Graham DI, Masayasu H, Macrae IM (2003) Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia. Free Radic Biol Med 34:56–63

    Article  PubMed  CAS  Google Scholar 

  12. Wilson SR, Zucker PA, Huang RRC, Spector A (1989) Development of synthetic compound with glutathione peroxidase activity. J Am Chem Soc 111:5936–5939

    Article  CAS  Google Scholar 

  13. Chaudiere J, Courtin O, Leclaire J (1992) Glutathione oxidase activity of selenocystamine: a mechanistic study. Biochem Biophys 296:328–336

    Article  CAS  Google Scholar 

  14. Rossato JI, Ketzer LA, Centurião FB, Silva SJN, Lüdtke DS, Zeni G, Braga AL, Rubin MA, Rocha JBT (2002) Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 27:297–303

    Article  PubMed  CAS  Google Scholar 

  15. Hassan W, Ibrahim M, Nogueira CW, Braga AL, Mohammad Zai IU, Taube PS, Rocha JBT (2009) Enhancement of iron-catalyzed lipid peroxidation by acidosis in brain homogenate: comparative effect of diphenyl diselenide and ebselen. Brain Res 1258:71–77

    Article  PubMed  CAS  Google Scholar 

  16. Braga AL, Paixão MW, Marin G (2005) Seleno-imine: a new class of versatile, modular N, Se ligands for asymmetric palladium-catalyzed allylic alkylation. Synlett 11:1675–1678

    Article  Google Scholar 

  17. Liu D, Dai Q, Zhang X (2005) A new class of readily available and conformationally rigid phosphino-oxazoline ligands for asymmetric catalysis. Tetrahedron 61:6460–6471

    Article  CAS  Google Scholar 

  18. Paulmier C (1986) Synthesis and properties of selenide. In: Baldwin JE (ed) Selenium reagents and intermediates in organic synthesis. Pergamon, Oxford, pp 84–116

    Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95:351–358

    Article  PubMed  CAS  Google Scholar 

  20. Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 153:1161–1168

    Article  Google Scholar 

  21. Talas ZS, Ozdemir I, Yilmaz I, Gok Y, ve Orun I (2008) The investigation of the antioxidative properties of the novel synthetic organoselenium compounds in some rat tissues. Exp Biol Med 233:575–579

    Article  CAS  Google Scholar 

  22. Talas ZS, Yilmaz I, Ozdemir I, Ates B, Gok Y, Cetinkaya B (2009) Role of synthesised organoselenium compounds on protection of rat erythrocytes from DMBA-induced oxidative stress. Biol Trace Elem Res 128:167–175

    Article  Google Scholar 

  23. Talas ZS, Bayraktar N, Ozdemir I, Gok Y, Yilmaz I (2009) The effects of synthetic organoselenium compounds on nitric oxide levels in DMBA-induced rat liver. J Environ Biol 30:591–593

    PubMed  CAS  Google Scholar 

  24. Ozdemir I, Talas ZS, Gok Y, Ates B, Yilmaz I (2010) Changes in tyrosine hydroxylase activity, adrenomedullin and total RNA levels by treatment of organoselenium compounds in rat hypothalamus exposed to DMBA. Fresenius Environmental Bulletin 19(4a):664–668

    CAS  Google Scholar 

  25. Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron catalyzed hydroxyl radical formation: stringent requirement for free iron coordination site. J Biol Chem 259:3620–3624

    PubMed  CAS  Google Scholar 

  26. Klebanoff SJ, Gally JI, Goldstein IM, Snyderman R (eds) (1992) Oxygen metabolites from phagocytes. Raven, New York, pp 541–588

    Google Scholar 

  27. Arnold WP, Longneeker DE, Epstein RM (1984) Photodegradation of sodium nitroprusside: biologic activity and cyanide release. Anesthesiology 61:254–260

    Article  PubMed  CAS  Google Scholar 

  28. Bates JNMT, Guerra R, Harrison DG (1990) Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol 42:157–165

    Article  Google Scholar 

  29. Bolanos J, Almeida A (1999) Roles of nitric oxide in brain hypoxia–ischemia. Biochim Biophys Acta 1411:415–436

    Article  PubMed  CAS  Google Scholar 

  30. Ogunmoyole RJBT, Okoronkwo AE, Kade IJ (2009) Altered pH homeostasis modulates the glutathione peroxidase mimics and other antioxidant properties of diphenyl diselenide. Chem Biol Interact 23:106–11

    Article  Google Scholar 

  31. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals 545 in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mohammad Ibrahim is a beneficiary of the TWAS-CNPq doctoral fellowship program. The financial support of TWAS, CNPq, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, M., Hassan, W., Deobald, A.M. et al. An Organoselenium Drug with Antioxidant Activity and Free Radical Scavenging Capacity In Vitro. Biol Trace Elem Res 149, 399–404 (2012). https://doi.org/10.1007/s12011-012-9440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9440-7

Keywords

Navigation