Skip to main content
Log in

Mass Fractions of 52 Trace Elements and Zinc/Trace Element Content Ratios in Intact Human Prostates Investigated by Inductively Coupled Plasma Mass Spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Contents of 52 trace elements in intact prostate of 64 apparently healthy 13–60-year-old men (mean age 36.5 years) were investigated by inductively coupled plasma mass spectrometry. Mean values (M ± SΕΜ) for mass fraction (in milligrams per kilogram, on dry-weight basis) of trace elements were as follows: Ag 0.041 ± 0.005, Al 36 ± 4, Au 0.0039 ± 0.0007, B 0.97 ± 0.13, Be 0.00099 ± 0.00006, Bi 0.021 ± 0.008, Br 29 ± 3, Cd 0.78 ± 0.09, Ce 0.028 ± 0.004, Co 0.035 ± 0.003, Cs 0.034 ± 0.003, Dy 0.0031 ± 0.0005, Er 0.0018 ± 0.0004, Gd 0.0030 ± 0.0005, Hg 0.046 ± 0.006, Ho 0.00056 ± 0.00008, La 0.074 ± 0.015, Li 0.040 ± 0.004, Mn 1.53 ± 0.09, Mo 0.30 ± 0.03, Nb 0.0051 ± 0.0009, Nd 0.013 ± 0.002, Ni 4.3 ± 0.7, Pb 1.8 ± 0.4, Pr 0.0033 ± 0.0004, Rb 15.9 ± 0.6, Sb 0.040 ± 0.005, Se 0.73 ± 0.03, Sm 0.0027 ± 0.0004, Sn 0.25 ± 0.05, Tb 0.00043 ± 0.00009, Th 0.0024 ± 0.0005, Tl 0.0014 ± 0.0001, Tm 0.00030 ± 0.00006, U 0.0049 ± 0.0014, Y 0.019 ± 0.003, Yb 0.0015 ± 0.0002, Zn 782 ± 97, and Zr 0.044 ± 0.009, respectively. The upper limit of mean contents of As, Cr, Eu, Ga, Hf, Ir, Lu, Pd, Pt, Re, Ta, and Ti were the following: As ≤0.018, Cr ≤0.64, Eu ≤0.0006, Ga ≤0.08, Hf ≤0.02, Ir ≤0.0004, Lu ≤0.00028, Pd ≤0.007, Pt ≤0.0009, Re ≤0.0015, Ta ≤0.005, and Ti ≤2.6. In all prostate samples, the content of Te was under detection limit (<0.003). Additionally, ratios of the Zn content to other trace element contents as well as correlations between Zn and trace elements were calculated. Our data indicate that the human prostate accumulates such trace elements as Al, Au, B, Br, Cd, Cr, Ga, Li, Mn, Ni, Pb, U, and Zn. No special relationship between Zn and other trace elements was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oliver SE, Gunnell D, Donovan JL (2000) Comparison of trends in prostate-cancer mortality in England and Wales and the USA. Lancet 355:1788–1789

    Article  PubMed  CAS  Google Scholar 

  2. Kumar RJ, Barqawi AB, Crawford ED (2004) Epidemiology of prostate cancer. Business Briefing, US Oncology Review, pp 1–6

    Google Scholar 

  3. Pischon T, Boeing H, Weikert S, Allen N, Key T, Johnsen NF, Tjonneland A, Severinsen MT, Overvad K, Rohrmann S, Kaaks R, Trichopoulou A, Zoi G, Trichopoulos D, Pala V, Palli D, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, May A, Manjer J, Wallström P, Stattin P, Hallmans G, Buckland G, Larranaga N, Chirlaque MD, Martinez C, Redondo Cornejo ML, Ardanaz E, Bingham S, Khaw K-T, Rinaldi S, Slimani N, Jenab M, Riboli E (2008) Body size and risk of prostate cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomark Prev 17:3252–3261

    Article  Google Scholar 

  4. Cohen LA (2002) Nutrition and prostate cancer: a review. Ann NY Acad Sci 963:148–155

    Article  PubMed  CAS  Google Scholar 

  5. Jones BA, Liu W-L, Araujo AB, Kasl SV, Silvera SN, Soler-Vilaґ H, Curnen MGM, Dubrow R (2008) Explaining the race difference in prostate cancer stage at diagnosis. Cancer Epidemiol Biomark Prev 17:2825–2834

    Article  Google Scholar 

  6. Van Patten CL, De Boer JG, Tomlinson Guns ES (2008) Diet and dietary supplement intervention trials for the prevention of prostate cancer recurrence: a review of the randomized controlled trial evidence. J Urol 180:2314–2322

    Article  PubMed  Google Scholar 

  7. Thomas JA (1999) Diet, micronutrients, and the prostate gland. Nutr Rev 57:95–103

    Article  PubMed  CAS  Google Scholar 

  8. Giovanucci E, Ascherio A, Rimm E, Stampfer MJ, Colditz GA (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 87:1767–1776

    Article  Google Scholar 

  9. Blumenfeld AJ, Fleshner N, Casselman B, Trachtenberg J (2000) Nutritional aspects of prostate cancer: a review. Can J Urol 7:927–935

    PubMed  CAS  Google Scholar 

  10. Yamada K, Araki S, Tamura M, Saka Y, Takahashi M, Kashihara H, Kono S (2000) Epidemiologic determinants of clinically relevant prostate cancer. Int J Cancer 89:259–264

    Article  Google Scholar 

  11. Gray MA, Centeno JA, Slaney DP, Ejnik JW, Todorov T, Nacey JN (2005) Environmental exposure to trace elements and prostate cancer in three New Zealand ethnic groups. Int J Environ Res Public Health 2:374–384

    Article  PubMed  CAS  Google Scholar 

  12. Rebbeck TR (2006) Conquering cancer disparities: new opportunities for cancer epidemiology, biomarker, and prevention research. Cancer Epidemiol Biomark Prev 15:1569–1571

    Article  Google Scholar 

  13. Zaichick V (2006) Medical elementology as a new scientific discipline. J Radioanal Nucl Chem 269:303–309

    Article  CAS  Google Scholar 

  14. Ide-Ektessabi A, Fujisawa F, Sugiruma K, Kitamura Y, Gotoh A (2002) Quantitative analysis of zinc in prostate cancer tissue using synchrotron radiation microbeams. X-Ray Spectrom 31:7–11

    Article  CAS  Google Scholar 

  15. Nayak SB, Bhat VR, Upadhyay D, Udupa SL (2003) Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian J Physiol Pharmacol 47:108–110

    PubMed  CAS  Google Scholar 

  16. Aydin A, Arsova-Sarafinovska Z, Sayal A, Eken A, Erdem O, Erten K, Ozgok Y, Dimovski A (2006) Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. Clin Biochem 39:176–179

    Article  PubMed  CAS  Google Scholar 

  17. Guntupalli JNR, Padala S, Gummuluri AVRM, Muktineni RK, Byreddy SR, Sreerama L, Kedarisetti PC, Angalakuduru DP, Satti BR, Venkatathri V, Pullela VBRL, Gavarasana S (2007) Trace elemental analysis of normal, benign hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 16:108–115

    Article  PubMed  CAS  Google Scholar 

  18. Silvera SAN, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18:7–27

    Article  Google Scholar 

  19. Kiziler AR, Aydemir B, Guzel S, Alici B, Ataus S, Tuna MB, Durak H, Kilic M (2010) May the level and ratio changes of trace elements be utilized in identification of disease progression and grade in prostatic cancer? Trace Elem Electrolytes 27:65–72

    CAS  Google Scholar 

  20. Oldereid NB, Thomassen Y, Attramadal A, Olaisen B, Purvis K (1993) Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J Reprod Fertil 99:421–425

    Article  PubMed  CAS  Google Scholar 

  21. Waalkes MP, Rehm S (1994) Cadmium and prostate cancer. J Toxicol Environ Health 43:251–269

    Article  PubMed  CAS  Google Scholar 

  22. Clark LC, Marshall JR (2001) Randomized, controlled chemoprevention trials in populations at very high risk for prostate cancer: elevated prostate-specific antigen and high-grade prostatic intraepithelial neoplasia. Urology 57(4 Suppl 1):185–187

    Article  PubMed  CAS  Google Scholar 

  23. Nelson MA, Reid ME, Duffield-Lillico AJ, Marshall JR (2002) Prostate cancer and selenium. Urol Clin North Am 29:67–70

    Article  PubMed  Google Scholar 

  24. Willis MS, Wians FH (2003) The role of nutrition in preventing prostate cancer: a review of the proposed mechanism of action of various dietary substances. Clin Chim Acta 330:57–83

    Article  PubMed  CAS  Google Scholar 

  25. Nyman DW, Stratton SM, Kopplin MJ, Dalkin BL, Nagle RB, Gandolfi JA (2004) Selenium and selenomethionine levels in prostate cancer patients. Cancer Detect Prev 28:8–16

    Article  PubMed  CAS  Google Scholar 

  26. Sapota A, Daragó A, Taczalski J, Kilanowicz A (2009) Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. Biometals 22:1041–1049

    Article  PubMed  CAS  Google Scholar 

  27. Sarafanov AG, Todorov TI, Centeno JA, Macias V, Gao W, Liang W-M, Beam C, Gray MA, Kajdacsy-Balla AA (2011) Prostate cancer outcome and tissue levels of metal ions. Prostate 71:1231–1238

    Article  PubMed  CAS  Google Scholar 

  28. Guzel S, Kiziler L, Aydemir B, Alici B, Ataus S, Aksu A, Durak H (2012) Association of Pb, Cd, and Se Concentrations and oxidative damage-related markers in different grades of prostate carcinoma. Biol Trace Elem Res 145:23–32

    Article  PubMed  CAS  Google Scholar 

  29. Stohs SJ, Baggihi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Med 18:321–336

    Article  CAS  Google Scholar 

  30. Witkiewicz-Kucharczyk A, Bal W (2006) Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett 162:29–42

    Article  PubMed  CAS  Google Scholar 

  31. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  PubMed  CAS  Google Scholar 

  32. Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21:28–44

    Article  PubMed  Google Scholar 

  33. Martinez-Zamudio R, Ha HC (2011) Environmental epigenetics in metal exposure. Epigenetics 6:820–827

    Article  PubMed  CAS  Google Scholar 

  34. Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  PubMed  CAS  Google Scholar 

  35. Zaichick V, Sviridova T, Zaichick S (1997) Zinc in human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol 29:565–574

    Article  PubMed  Google Scholar 

  36. Zaichick V, Zaichick S (1999) Role of zinc in prostate cancerogenesis. In: Mengen und Spurenelemente, 19 Arbeitstagung. Friedrich-Schiller-Universitat, Jena, 1999, pp 104–115

  37. Zaichick V (2004) INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem 262:229–234

    Article  CAS  Google Scholar 

  38. Costello LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35:285–296

    Article  PubMed  CAS  Google Scholar 

  39. Zaichick S, Zaichick V (2012) Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. Appl Radiat Isot 70:81–87

    Article  PubMed  CAS  Google Scholar 

  40. Zaichick V, Nosenko S, Moskvina I (2012) The effect of age on 12 chemical element contents in intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res. doi:10.1007/S12011-011-9294-4

  41. Sarafanov AG, Todorov TI, Kajdacsy-Balla A, Gray MA, Macias V, Centeno JA (2008) Analysis of iron, zinc, selenium and cadmium in paraffin-embedded prostate tissue specimens using inductively coupled plasma mass-spectrometry. J Trace Elem Med Biol 22:305–314

    Article  PubMed  CAS  Google Scholar 

  42. Tipton IH, Cook MJ (1963) Trace elements in human tissue. Part II. Adult subjects from the United States. Health Phys 9:103–145

    Article  PubMed  CAS  Google Scholar 

  43. Tipton JH, Steiner RL, Foland WD, Mueller J, Stanley M (1954) USAEC-ORNL-Report-CF-54-12-66

  44. Stitch SR (1957) Trace elements in human tissue. I. A semi-quantitative spectrographic survey. Biochem J 67:97–103

    PubMed  CAS  Google Scholar 

  45. Liebscher K, Smith H (1968) Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue. Arch Environ Health 17:882–891

    Google Scholar 

  46. Kubo H, Hashimoto S, Ishibashi A, Chiba R, Yokota H (1976) Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections. Med Phys 3:204–209

    Article  PubMed  CAS  Google Scholar 

  47. Forssen A (1972) Inorganic elements in the human body. I. occurrence of Ba, Br, Ca, Cd, Cs, Cu, K, Mn, Ni, Sn, Sr, Y and Zn in the human body. Annales medicinae Experimentalis et Biologie (Finland) 50:99–162

  48. Schöpfer J, Drasch G, Schrauzer GN (2010) Selenium and cadmium levels and ratios in prostates, livers, and kidneys of nonsmokers and smokers. Biol Trace Elem Res 134:180–187

    Article  PubMed  Google Scholar 

  49. Ogunlewe JO, Osegbe DN (1989) Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate. Cancer 63:1388–1392

    Article  PubMed  CAS  Google Scholar 

  50. Yamagata N (1962) The concentration of common cesium and rubidium in human body. J Radiat Res 3:9–30

    Article  PubMed  CAS  Google Scholar 

  51. Soman SD, Joseph KT, Raut SJ, Mulay GD, Parameswaran M, Pandey VK (1970) Studies of major and trace element content in human tissues. Health Phys 19:641–656

    Article  PubMed  CAS  Google Scholar 

  52. Koch HJ, Smith ER (1956) The determination of copper and zinc in normal and pathologic human thyroid tissue. J Clin Endocrinol 16:123–129

    Article  CAS  Google Scholar 

  53. Weinig E, Zink P (1967) Über die quantitative massenspektrometrische Bestimmung des normalen Thallium-Geehalts inmenschlichen Organismus. Archiv für Toxikologie 22:255–274

    PubMed  CAS  Google Scholar 

  54. Höffken B, Rausch-Stroomann JG (1969) A study of the metabolism of zinc its metalloenzymes in diabetes mellitus. Z Klin Chem Klin Biochem 7:4–7

    PubMed  Google Scholar 

  55. Anspaugh LR, Robinson WL, Martin WH, Lowe OA (1973) Compilation of published information on elemental concentrations in human organs in both normal and diseased states. No. UCRL-51013Pt. 1971-1973, pp. 1–4

  56. Jafa A, Mahendra NM, Chowdhury AR, Kamboj VP (1980) Trace elements in prostatic tissue and plasma in prostatic diseases of man. Indian J Cancer 17:34–37

    PubMed  CAS  Google Scholar 

  57. Györkey F, Min K-W, Huff JA, Györkey P (1967) Zinc and magnesium in human prostate gland: normal, hyperplastic, and neoplastic. Cancer Res 27:1349–1353

    Google Scholar 

  58. Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS (1990) Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ach in 55 human cadavers. Environ Res 52:126–145

    Article  PubMed  CAS  Google Scholar 

  59. Iyengar GV, Kollmer WE, Bowen HGM (1978) The elemental composition of human tissues and body fluids. A compilation of values for adults, Verlag Chemie, Weinheim, 151 p

    Google Scholar 

  60. Iyengar GV (1998) Reevaluation of the trace element content in reference men. Radiat Phys Chem 51:545–560

    Article  CAS  Google Scholar 

  61. Feustel A, Wennrich R, Steiniger D, Klauss P (1982) Zinc and cadmium concentration in prostatic carcinoma of different histological grading in comparison to normal prostate tissue and adenofibromyomatosis (BPH). Urol Res 10:301–303

    Article  PubMed  CAS  Google Scholar 

  62. Brys M, Nawrocka AD, Miekos E, Zydek C, Foksinski M, Berecki A, Krajewska W (1997) Zinc and cadmium analysis in human prostate neoplasmas. Biol Trace Elem Res 59:145–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. A. A. Zhavoronkov of Institute of Human Morphology, Russian Academy of Medical Sciences, Moscow, for supplying prostate samples, and they acknowledge the support of the Presidium of Russian Academy of Sciences, program for basic research “Creation and improvement of methods of chemical analysis, and investigation of substances and material structure.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zaichick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaichick, S., Zaichick, V., Nosenko, S. et al. Mass Fractions of 52 Trace Elements and Zinc/Trace Element Content Ratios in Intact Human Prostates Investigated by Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 149, 171–183 (2012). https://doi.org/10.1007/s12011-012-9427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9427-4

Keywords

Navigation