Skip to main content

Luteolin Reduces Zinc-Induced Tau Phosphorylation at Ser262/356 in an ROS-Dependent Manner in SH-SY5Y Cells

Abstract

In brain, excess zinc alters the metabolism of amyloid precursor protein, leading to β-amyloid protein deposition, one of the hallmarks of Alzheimer’s disease (AD) pathology. Recently, it has been reported that zinc accelerates in vitro tau fibrillization, another hallmark of AD. In the current study, we examined the effect of high-concentration zinc on tau phosphorylation in human neuroblastoma SH-SY5Y cells. We found that incubation of cells with zinc resulted in abnormal tau phosphorylation at Ser262/356. Moreover, the current study has investigated whether luteolin (Lu), a bioflavonoid, could decrease zinc-induced tau hyperphosphorylation and its underlying mechanisms. Using Western blot and protein phosphatase activity assay, activities of tau kinases and phosphatase were investigated. Our data suggest (1) that zinc induces tau hyperphosphorylation at Ser262/356 epitope and (2) that Lu efficiently attenuates zinc-induced tau hyperphosphorylation through not only its antioxidant action but also its regulation of the phosphorylation/dephosphorylation system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AD:

Alzheimer’s disease

CaMKII:

Calcium/calmodulin-dependent protein kinase II

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GSH:

Reduced glutathione

GSK3β:

Glycogen synthase kinase 3β

H2O2 :

Hydrogen peroxide

Lu:

Luteolin

mTOR:

Mammalian target of rapamycin

NFTs:

Neurofibrillary tangles

OA:

Okadaic acid

p70S6K:

70-kDa Ribosomal protein S6 kinase

PP2A:

Protein phosphatase 2A

Rapa:

Rapamycin

ROS:

Reactive oxygen species

SH-SY5Y:

Human SH-SY5Y neuroblastoma cells

References

  1. Miller Y, Ma B, Nussinov R (2010) Zinc ions promote Alzheimer A beta aggregation via population shift of polymorphic states. Proc Natl Acad Sci U S A 107(21):9490–9495

    Article  PubMed  CAS  Google Scholar 

  2. Religa D, Strozyk D, Cherny RA, Volitakis I, Haroutunian V, Winblad B, Naslund J, Bush AI (2006) Elevated cortical zinc in Alzheimer disease. Neurology 67(1):69–75

    Article  PubMed  CAS  Google Scholar 

  3. Flinn JM, Hunter D, Linkous DH, Lanzirotti A, Smith LN, Brightwell J, Jones BF (2005) Enhanced zinc consumption causes memory deficits and increased brain levels of zinc. Physiol Behav 83(5):793–803

    Article  PubMed  CAS  Google Scholar 

  4. Mo ZY, Zhu YZ, Zhu HL, Fan JB, Chen J, Liang Y (2009) Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J Biol Chem 284(50):34648–34657

    Article  PubMed  CAS  Google Scholar 

  5. Lee JY, Friedman JE, Angel I, Kozak A, Koh JY (2004) The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol Aging 25(10):1315–1321

    Article  PubMed  CAS  Google Scholar 

  6. Petri S, Calingasan NY, Alsaied OA, Wille E, Kiaei M, Friedman JE, Baranova O, Chavez JC, Beal MF (2007) The lipophilic metal chelators DP-109 and DP-460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 102(3):991–1000

    Article  PubMed  CAS  Google Scholar 

  7. Rezai-Zadeh K, Douglas SR, Bai Y, Tian J, Hou H, Mori T, Zeng J, Obregon D, Town T, Tan J (2009) Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease beta-amyloid production. J Cell Mol Med 13(3):574–588

    Article  PubMed  CAS  Google Scholar 

  8. Zhou F, Qu L, Lv K, Chen H, Liu J, Liu X, Li Y, Sun X (2011) Luteolin protects against reactive oxygen species-mediated cell death induced by zinc toxicity via the PI3K-Akt-NF-kappaB-ERK-dependent pathway. J Neurosci Res 89(11):1859–1868

    Article  PubMed  CAS  Google Scholar 

  9. Fang J, Zhou Q, Shi XL, Jiang BH (2007) Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis 28(3):713–723

    Article  PubMed  CAS  Google Scholar 

  10. Li Q, Sanlioglu S, Li S, Ritchie T, Oberley L, Engelhardt JF (2001) GPx-1 gene delivery modulates NFkappaB activation following diverse environmental injuries through a specific subunit of the IKK complex. Antioxid Redox Signal 3(3):415–432

    Article  PubMed  CAS  Google Scholar 

  11. Fang H, Zhang LF, Meng FT, Du X, Zhou JN (2010) Acute hypoxia promote the phosphorylation of tau via ERK pathway. Neurosci Lett 474(3):173–177

    Article  PubMed  CAS  Google Scholar 

  12. Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y (2004) Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. J Biol Chem 279(43):44795–44801

    Article  PubMed  CAS  Google Scholar 

  13. Kyoung PH, Lovati E, Pasinetti GM, Ksiezak-Reding H (2004) Phosphorylation of tau at THR212 and SER214 in human neuronal and glial cultures: the role of AKT. Neuroscience 127(3):649–658

    Article  Google Scholar 

  14. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13

    Article  PubMed  Google Scholar 

  15. Iqbal K, Liu F, Gong CX, Alonso AC, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69

    Article  PubMed  CAS  Google Scholar 

  16. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103(1):26–35

    Article  PubMed  CAS  Google Scholar 

  17. Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 357(2):299–309

    Article  PubMed  CAS  Google Scholar 

  18. Iijima K, Gatt A, Iijima-Ando K (2010) Tau Ser262 phosphorylation is critical for Abeta42-induced tau toxicity in a transgenic Drosophila model of Alzheimer’s disease. Hum Mol Genet 19(15):2947–2957

    Article  PubMed  CAS  Google Scholar 

  19. Meske V, Albert F, Ohm TG (2008) Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A- and glycogen synthase kinase-3 -dependent phosphorylation of Tau. J Biol Chem 283(1):100–109

    Article  PubMed  CAS  Google Scholar 

  20. Sironi JJ, Yen SH, Gondal JA, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Lett 436(3):471–475

    Article  PubMed  CAS  Google Scholar 

  21. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2001) Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Lett 490(1–2):15–22

    Article  PubMed  CAS  Google Scholar 

  22. An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, Iqbal IG, Winblad B, Pei JJ (2003) Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. Am J Pathol 163(2):591–607

    Article  PubMed  CAS  Google Scholar 

  23. Ding Q, Markesbery WR, Chen Q, Li F, Keller JN (2005) Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci 25(40):9171–9175

    Article  PubMed  CAS  Google Scholar 

  24. Zhou XW, Tanila H, Pei JJ (2008) Parallel increase in p70 kinase activation and tau phosphorylation (S262) with Abeta overproduction. FEBS Lett 582(2):159–164

    Article  PubMed  CAS  Google Scholar 

  25. Guise S, Braguer D, Carles G, Delacourte A, Briand C (2001) Hyperphosphorylation of tau is mediated by ERK activation during anticancer drug-induced apoptosis in neuroblastoma cells. J Neurosci Res 63(3):257–267

    Article  PubMed  CAS  Google Scholar 

  26. Wang HY, Li W, Benedetti NJ, Lee DH (2003) Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278(34):31547–31553

    Article  PubMed  CAS  Google Scholar 

  27. Lambourne SL, Sellers LA, Bush TG, Choudhury SK, Emson PC, Suh YH, Wilkinson LS (2005) Increased tau phosphorylation on mitogen-activated protein kinase consensus sites and cognitive decline in transgenic models for Alzheimer’s disease and FTDP-17: evidence for distinct molecular processes underlying tau abnormalities. Mol Cell Biol 25(1):278–293

    Article  PubMed  CAS  Google Scholar 

  28. Su B, Wang X, Lee HG, Tabaton M, Perry G, Smith MA, Zhu X (2010) Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 468(3):267–271

    Article  PubMed  CAS  Google Scholar 

  29. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li QX, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI (2007) Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2(6):e536

    Article  PubMed  Google Scholar 

  30. Zambrano CA, Egana JT, Nunez MT, Maccioni RB, Gonzalez-Billault C (2004) Oxidative stress promotes tau dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radic Biol Med 36(11):1393–1402

    Article  PubMed  CAS  Google Scholar 

  31. Uguz AC, Naziroglu M, Espino J, Bejarano I, Gonzalez D, Rodriguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232(1–3):15–23

    PubMed  CAS  Google Scholar 

  32. van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci U S A 107(31):13888–13893

    Article  PubMed  Google Scholar 

  33. Corcoran NM, Martin D, Hutter-Paier B, Windisch M, Nguyen T, Nheu L, Sundstrom LE, Costello AJ, Hovens CM (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17(8):1025–1033

    Article  PubMed  CAS  Google Scholar 

  34. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, Wang XC, Chen XQ, Yang Y, Zhang JY, Wang Q, Xu H, Liao FF, Wang JZ (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 104(9):3591–3596

    Article  PubMed  CAS  Google Scholar 

  35. Liu XA, Liao K, Liu R, Wang HH, Zhang Y, Zhang Q, Wang Q, Li HL, Tian Q, Wang JZ (2010) Tau dephosphorylation potentiates apoptosis by mechanisms involving a failed dephosphorylation/activation of Bcl-2. J Alzheimers Dis 19(3):953–962

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Foundation of Doctor Scientific Research of Nanchang Hangkong University, Foundation of State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (no. SMFA10B01), and National Natural Science Foundation of China (no. 30973686).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Futao Zhou or Lina Qu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, F., Chen, S., Xiong, J. et al. Luteolin Reduces Zinc-Induced Tau Phosphorylation at Ser262/356 in an ROS-Dependent Manner in SH-SY5Y Cells. Biol Trace Elem Res 149, 273–279 (2012). https://doi.org/10.1007/s12011-012-9411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9411-z

Keywords

  • Luteolin
  • Tau phosphorylation
  • Tau kinases
  • ROS