Skip to main content
Log in

Exposure to Low Level of Arsenic and Lead in Drinking Water from Antofagasta City Induces Gender Differences in Glucose Homeostasis in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Populations chronically exposed to arsenic in drinking water often have increased prevalence of diabetes mellitus. The purpose of this study was to compare the glucose homeostasis of male and female rats exposed to low levels of heavy metals in drinking water. Treated groups were Sprague–Dawley male and female rats exposed to drinking water from Antofagasta city, with total arsenic of 30 ppb and lead of 53 ppb for 3 months; control groups were exposed to purified water by reverse osmosis. The two treated groups in both males and females showed arsenic and lead in the hair of rats. The δ-aminolevulinic acid dehydratase was used as a sensitive biomarker of arsenic toxicity and lead. The activity of δ-aminolevulinic acid dehydratase was reduced only in treated male rats, compared to the control group. Treated males showed a significantly sustained increase in blood glucose and plasma insulin levels during oral glucose tolerance test compared to control group. The oral glucose tolerance test and the homeostasis model assessment of insulin resistance demonstrated that male rats were insulin resistant, and females remained sensitive to insulin after treatment. The total cholesterol and LDL cholesterol increased in treated male rats vs. the control, and triglyceride increased in treated female rats vs. the control. The activity of intestinal Na+/glucose cotransporter in male rats increased compared to female rats, suggesting a significant increase in intestinal glucose absorption. The findings indicate that exposure to low levels of arsenic and lead in drinking water could cause gender differences in insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carrasco EP, Perez FB, Angel BB, Albala CB, Santos JL, Larenas GY, Montalvo DV (2004) Prevalence of type 2 diabetes and obesity in two Chilean aboriginal populations living in urban zones. Rev Med Chil 132(10):1189–1197

    PubMed  Google Scholar 

  2. Rahman M, Tondel M, Ahmad SA, Axelson O (1998) Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol 148(2):198–203

    Article  PubMed  CAS  Google Scholar 

  3. Coronado-Gonzalez JA, Del Razo LM, Garcia-Vargas G, Sanmiguel-Salazar F, Escobedo-de la Pena J (2007) Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res 104(3):383–389

    Article  PubMed  CAS  Google Scholar 

  4. Lai MS, Hsueh YM, Chen CJ, Shyu MP, Chen SY, Kuo TL, Wu MM, Tai TY (1994) Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139(5):484–492

    PubMed  CAS  Google Scholar 

  5. Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11(1):2–22

    PubMed  Google Scholar 

  6. Palacios J, Cifuentes F, Stegen S (2007) Chronic ingestion of arsenic (< 40 mu M) in tap water impairs vascular endothelium response in aorta of female rats. Clin Exp Hypertens 29(2):98–98

    Google Scholar 

  7. Cifuentes F, Bravo J, Norambuena M, Stegen S, Ayavire A, Palacios J (2009) Chronic exposure to arsenic in tap water reduces acetylcholine-induced relaxation in the aorta and increases oxidative stress in female rats. Int J Toxicol 28(6):534–541

    Article  PubMed  CAS  Google Scholar 

  8. WHO (2004) Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  9. Sepulveda V, Vega J, Delgado I (2000) Severe exposure to environmental lead in a child population in Antofagasta, Chile. Rev Med Chil 128(2):221–232

    PubMed  CAS  Google Scholar 

  10. Queirolo F, Stegen S, Mondaca J, Cortes R, Rojas R, Contreras C, Munoz L, Schwuger MJ, Ostapczuk P (2000) Total arsenic, lead, cadmium, copper, and zinc in some salt rivers in the northern Andes of Antofagasta, Chile. Sci Total Environ 255(1–3):85–95

    Article  PubMed  CAS  Google Scholar 

  11. Walton FS, Harmon AW, Paul DS, Drobna Z, Patel YM, Styblo M (2004) Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol 198(3):424–433

    Article  PubMed  CAS  Google Scholar 

  12. Paul DS, Walton FS, Saunders RJ, Styblo M (2011) Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet. Environ Health Perspect 119(8):1104–1109

    Article  PubMed  CAS  Google Scholar 

  13. Drobna Z, Walton FS, Paul DS, Xing W, Thomas DJ, Styblo M (2011) Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 84(1):3–16

    Article  Google Scholar 

  14. Boquist L, Boquist S, Ericsson I (1988) Structural beta-cell changes and transient hyperglycemia in mice treated with compounds inducing inhibited citric acid cycle enzyme activity. Diabetes 37(1):89–98

    Article  PubMed  CAS  Google Scholar 

  15. Fujii Y, Kaizuka M, Hashida F, Maruo J, Sato E, Yasuda H, Kurokawa T, Ishibashi S (1991) Insulin regulates Na+/glucose cotransporter activity in rat small intestine. Biochim Biophys Acta 1063(1):90–94

    Article  PubMed  CAS  Google Scholar 

  16. Ferraris RP, Diamond J (1997) Regulation of intestinal sugar transport. Physiol Rev 77(1):257–302

    PubMed  CAS  Google Scholar 

  17. Khan JM, Wingertzahn MA, Teichberg S, Vancurova I, Harper RG, Wapnir RA (2000) Development of the intestinal SGLT1 transporter in rats. Mol Genet Metab 69(3):233–239

    Article  PubMed  CAS  Google Scholar 

  18. Welz B, Melcher M (1985) Decomposition of marine biological tissues for determination of arsenic, selenium, and mercury using hydride-generation and cold-vapor atomic absorption spectrometries. Anal Chem 57(2):427–431

    Article  PubMed  CAS  Google Scholar 

  19. Pickavance LC, Wilding JP (2007) Effects of S 15511, a therapeutic metabolite of the insulin-sensitizing agent S 15261, in the Zucker Diabetic Fatty rat. Diabetes Obes Metab 9(1):114–120

    Article  PubMed  CAS  Google Scholar 

  20. Cardoso AR, Carvalho CR, Velloso LA, Brenelli SL, Saad MJ, Carvalheira JB (2005) Effect of thiopental, pentobarbital and diethyl ether on early steps of insulin action in liver and muscle of the intact rat. Life Sci 76(20):2287–2297

    Article  PubMed  CAS  Google Scholar 

  21. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21(1):15–23

    Article  PubMed  CAS  Google Scholar 

  22. Warren MJ, Cooper JB, Wood SP, Shoolingin-Jordan PM (1998) Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem Sci 23(6):217–221

    Article  PubMed  CAS  Google Scholar 

  23. Mittal M, Flora SJ (2006) Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice. Chem Biol Interact 162(2):128–139

    Article  PubMed  CAS  Google Scholar 

  24. Berlin A, Schaller KH (1974) European standardized method for the determination of delta-aminolevulinic acid dehydratase activity in blood. Z Klin Chem Klin Biochem 12(8):389–390

    PubMed  CAS  Google Scholar 

  25. Diez N, Barber A, Ponz F (1992) Role of -SH groups in rat sugar intestinal transport in vivo. Rev Esp Fisiol 48(2):127–132

    PubMed  CAS  Google Scholar 

  26. Kim Y, Lee BK (2011) Association between urinary arsenic and diabetes mellitus in the Korean general population according to KNHANES 2008. Sci Total Environ 409(19):4054–4062

    Article  PubMed  CAS  Google Scholar 

  27. Steinmaus C, Yuan Y, Liaw J, Smith AH (2009) Low-level population exposure to inorganic arsenic in the United States and diabetes mellitus: a reanalysis. Epidemiology 20(6):807–815

    Article  PubMed  Google Scholar 

  28. Lin JL, Lin-Tan DT, Hsu KH, Yu CC (2003) Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N Engl J Med 348(4):277–286

    Article  PubMed  CAS  Google Scholar 

  29. Tsaih SW, Korrick S, Schwartz J, Amarasiriwardena C, Aro A, Sparrow D, Hu H (2004) Lead, diabetes, hypertension, and renal function: the normative aging study. Environ Health Perspect 112(11):1178–1182

    Article  PubMed  CAS  Google Scholar 

  30. Chen CJ, Hsu LI, Wang CH, Shih WL, Hsu YH, Tseng MP, Lin YC, Chou WL, Chen CY, Lee CY, Wang LH, Cheng YC, Chen CL, Chen SY, Wang YH, Hsueh YM, Chiou HY, Wu MM (2005) Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicol Appl Pharmacol 206(2):198–206

    Article  PubMed  CAS  Google Scholar 

  31. Lesage FX, Deschamps F, Millart H (2010) Lead levels in fur of rats treated with inorganic lead measured by inductively coupled argon plasma mass spectrometry. Interdiscip Toxicol 3(4):118–121

    Article  PubMed  CAS  Google Scholar 

  32. Subcommittee on Arsenic in Drinking Water NRC (1999) Arsenic in drinking water. The National Academies, Washington, DC

    Google Scholar 

  33. Vahter M, Akesson A, Liden C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104(1):85–95

    Article  PubMed  CAS  Google Scholar 

  34. Vahter M, Concha G (2001) Role of metabolism in arsenic toxicity. Pharmacol Toxicol 89(1):1–5

    Article  PubMed  CAS  Google Scholar 

  35. Hopenhayn C, Huang B, Christian J, Peralta C, Ferreccio C, Atallah R, Kalman D (2003) Profile of urinary arsenic metabolites during pregnancy. Environ Health Perspect 111(16):1888–1891

    Article  PubMed  CAS  Google Scholar 

  36. Lindberg AL, Ekstrom EC, Nermell B, Rahman M, Lonnerdal B, Persson LA, Vahter M (2008) Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ Res 106(1):110–120

    Article  PubMed  CAS  Google Scholar 

  37. Kitchin KT (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172(3):249–261

    Article  PubMed  CAS  Google Scholar 

  38. Dopp E, von Recklinghausen U, Diaz-Bone R, Hirner AV, Rettenmeier AW (2011) Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells. Environ Res 110(5):435–442

    Article  Google Scholar 

  39. Hevener A, Reichart D, Janez A, Olefsky J (2002) Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes 51(6):1907–1912

    Article  PubMed  CAS  Google Scholar 

  40. Fujita Y, Kojima H, Hidaka H, Fujimiya M, Kashiwagi A, Kikkawa R (1998) Increased intestinal glucose absorption and postprandial hyperglycaemia at the early step of glucose intolerance in Otsuka Long-Evans Tokushima Fatty rats. Diabetologia 41(12):1459–1466

    Article  PubMed  CAS  Google Scholar 

  41. Dyer J, Wood IS, Palejwala A, Ellis A, Shirazi-Beechey SP (2002) Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol 282(2):G241–G248

    PubMed  CAS  Google Scholar 

  42. Izquierdo-Vega JA, Soto CA, Sanchez-Pena LC, De Vizcaya-Ruiz A, Del Razo LM (2006) Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett 160(2):135–142

    Article  PubMed  CAS  Google Scholar 

  43. Paul DS, Devesa V, Hernandez-Zavala A, Adair BM, Walton FS, Drobna Z, Thomas DJ, Styblo M (2008) Environmental arsenic as a disruptor of insulin signaling. Met Ions Biol Med 10:1–7

    PubMed  Google Scholar 

  44. Pysher MD, Sollome JJ, Regan S, Cardinal TR, Hoying JB, Brooks HL, Vaillancourt RR (2007) Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic. Toxicol Appl Pharmacol 224(1):39–48

    Article  PubMed  CAS  Google Scholar 

  45. Moriya R, Shirakura T, Ito J, Mashiko S, Seo T (2009) Activation of sodium-glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. Am J Physiol Endocrinol Metab 297(6):E1358–E1365

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Blanca Alvarez Carvajal from Laboratorio Clínico Hormonal RadioLab, Laboratorio Clínico Blanco for the technical assistance in this study. This work was in part supported by grants from Fondo Interno de Investigación Científica de la Universidad Católica del Norte (DGIP 220203-10301206) and Dirección General de Investigación (DIRINV 1339-2007) de la Universidad de Antofagasta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Palacios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, J., Roman, D. & Cifuentes, F. Exposure to Low Level of Arsenic and Lead in Drinking Water from Antofagasta City Induces Gender Differences in Glucose Homeostasis in Rats. Biol Trace Elem Res 148, 224–231 (2012). https://doi.org/10.1007/s12011-012-9355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9355-3

Keywords

Navigation