Skip to main content
Log in

The Efficacy of Chromium as a Growth Enhancer for Mirror Carp (Cyprinus carpio L): An Integrated Study Using Biochemical, Genetic, and Histological Responses

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A growth trial was conducted on juvenile mirror carp (Cyprinus carpio L.) for 8 weeks to compare the efficacy of three chromium (Cr) compounds (Cr chloride, Cr picolinate, and Cr yeast) at a level 0.5 mg/kg as a potential growth enhancer. In addition, a high level of Cr (2.0 mg/kg) as Cr chloride has also been added in parallel for comparison. All Cr fortified diets at a level 0.5 mg/kg produced superior growth for carp compared to the control group and the group fed the high level of Cr chloride (2.0 mg/kg). Metabolic indicators measured included two of the key liver enzymes (hexokinase, HK) and (glucose-6-phosphate dehydrogenase, G6PD) activity. The results validated the positive effect of Cr at a level 0.5 mg/kg on enzyme activity and carbohydrate utilization producing significantly better growth performance for mirror carp. The study also included measurement of DNA strand breaks in the erythrocytes using the comet assay which revealed significantly (P < 0.05) increased DNA damage in fish fed on high level of Cr chloride (2.0 mg/kg) but the other treatments were not significantly different (P > 0.05) from the control groups. The concentration of Cr in the liver, gut, and whole fish tissues increased with increasing dietary Cr supplementation. Overall, Cr supplementation at a level 0.5 mg/kg from different sources may affect growth performance in carp by activation of some key liver enzymes (HK and G6PD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vincent JB (2000) The biochemistry of chromium. J Nutr 130:715–718

    PubMed  CAS  Google Scholar 

  2. NRC (National Research Council) (1997) The role of chromium in animal nutrition. National Academic Press, Washington, DC

    Google Scholar 

  3. Paul TK, Haldar S, Ghosh TK (2005) Growth performance and nutrient utilization in black Bengal bucks (Capra hircus) supplemented with graded doses of chromium as chromium chloride hexahydrate. J Vit Sci 6:33–40

    Google Scholar 

  4. Ahmed N, Haldar S, Pakhira MC, Ghosh TK (2005) Growth performances, nutrient utilization and carcass traits in broiler chickens fed with a normal and a low energy diet supplemented with inorganic chromium (as chromium chloride hexahydrate) and a combination of inorganic chromium and ascorbic acid. J Agr Sci 143:427–439

    Article  CAS  Google Scholar 

  5. Yildiz AÖ, Parlatp SS, Yazgan O (2004) The effects of organic chromium supplementation on production traits and some serum parameters of laying quails. Revue Méd Vét 155:642–646

    CAS  Google Scholar 

  6. Ott EA, Kivipelto J (1999) Influence of chromium tripicolinate on growth and glucose metabolism in yearling horses. J Anim Sci 77:3022–3030

    PubMed  CAS  Google Scholar 

  7. Stahlhut HS, Whisnant CS, Spears JW (2006) Effect of chromium supplementation and copper status on performance and reproduction of beef cows. Anim Feed Sci Technol 128:266–275

    Article  CAS  Google Scholar 

  8. Guan X, Matte JJ, Ku PK, Snow JL, Burton JL, Trottier NL (2000) High chromium yeast supplementation improves glucose tolerance in pigs by decreasing hepatic extraction of insulin. J Nutr 130:1274–1279

    PubMed  CAS  Google Scholar 

  9. Debski B, Zalewski W, Gralak MA, Kosla T (2004) Chromium-yeast supplementation of chicken broilers in an industrial farming system. J Trace Elem Med Biol 18:47–51

    Article  PubMed  CAS  Google Scholar 

  10. Matthews JO, Higbie AD, Southern LL, Coombs DF, Bidner TD, Odgaard RL (2003) Effect of chromium propionate and metabolizable energy on growth, carcass traits, and pork quality of growing-finishing pigs. J Anim Sci 81:191–196

    PubMed  CAS  Google Scholar 

  11. Kegley EB, Spears JW, Brown TT Jr (1997) Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. J Anim Sci 75:1956–1964

    PubMed  CAS  Google Scholar 

  12. Van de Ligt JL, Lindemann MD, Harmon RJ, Monegue HJ, Cromwell GL (2002) Effect of chromium tripicolinate supplementation on porcine immune response during the postweaning period. J Anim Sci 80:449–455

    PubMed  Google Scholar 

  13. Shiau SY, Chen MJ (1993) Carbohydrate utilization by tilapia (Oreochromis niloticus×o. aureus) as influenced by different chromium sources. J Nutr 123:1747–1753

    PubMed  CAS  Google Scholar 

  14. Tacon AJ, Beveridge MM (1982) Effects of dietary trivalent chromium on rainbow trout, Salmo gairdneri. Nutr Rep Int 25:49–56

    CAS  Google Scholar 

  15. Liu T, Wen H, Jiang M, Yuan D, Gao P, Zhao Y, Wu F, Liu W (2010) Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus. Fish Physiol Biochem 36:565–572

    Article  PubMed  CAS  Google Scholar 

  16. Pan Q, Liu S, Tan YG, Bi YZ (2003) The effect of chromium picolinate on growth and carbohydrate utilization in tilapia, Oreochromis niloticus×oreochromis aureus. Aquaculture 225:421–429

    Article  CAS  Google Scholar 

  17. Selcuk Z, Tiril SU, Alagil F, Belen V, Salman M, Cenesiz S, Muglali OH, Yagci FB (2010) Effects of dietary L-carnitine and chromium picolinate supplementations on performance and some serum parameters in rainbow trout (Oncorhynchus mykiss). Aquacult Int 18:213–221

    Article  CAS  Google Scholar 

  18. Gatta PP, Thompson KD, Smullen R, Piva A, Testi S, Adams A (2001) Dietary organic chromium supplementation and its effect on the immune response of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 11:371–382

    Article  PubMed  CAS  Google Scholar 

  19. Gatta PP, Piva A, Paolini M, Testi S, Bonaldo A, Antelli A, Mordenti A (2001) Effects of dietary organic chromium on gilthead seabream (Sparus aurata L.) performances and liver microsomal metabolism. Aquac Res 32:60–69

    Article  CAS  Google Scholar 

  20. Anderson RA (1998) Chromium, glucose intolerance and diabetes. J Am Coll Nutr 17:548–555

    PubMed  CAS  Google Scholar 

  21. De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds. A review. Mutat Res Rev Genet Toxicol 238:99–172

    Google Scholar 

  22. Stearns DM (2007) Multiple hypotheses for chromium (III) biochemistry: Why the essentiality of chromium is still questioned. In: Vincent JB (ed) The nutritional biochemistry of chromium. Elsevier, UK

    Google Scholar 

  23. O’Brien TJ, Ceryak S, Patierno SR (2003) Complexitites of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 58:167–173

    Google Scholar 

  24. Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenisity and toxicity of chromium (VI). Chem Res Toxicol 18:3–11

    Article  PubMed  CAS  Google Scholar 

  25. Gaddameedi RR, Burgula S, Sairam M, Singh SS (2011) Role of insulin in Cr(VI)-mediated genotoxicity in Neurospora crassa. Lett Appl Microbiol 53:14–21

    Article  PubMed  CAS  Google Scholar 

  26. Lushchak OV, Kubrak OI, Nykorak MZ, Storey KB, Lushchak VI (2008) The effect of potassium dichromate on free radical processes in goldfish: possible protective role of glutathione. Aquat Toxicol 87:108–114

    Article  PubMed  CAS  Google Scholar 

  27. Lushchak OV, Kubrak OI, Torous IM, Nazarchuk TY, Storey KB, Lushchak VI (2009) Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere 75:56–62

    Article  PubMed  CAS  Google Scholar 

  28. AOAC (2002) Official methods of analysis. Association of official analytical chemists, Washington

    Google Scholar 

  29. Davies SJ, Gouveia A (2010) Response of common carp fry fed diets containing a pea seed meal (Pisum sativum) subjected to different thermal processing methods. Aquaculture 305:117–123

    Article  Google Scholar 

  30. Braham D, Trinder P (1972) Estimation of glucose by glucose oxidase method. Analyst 97:142–145

    Article  Google Scholar 

  31. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008) Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture 274:101–108

    Article  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  33. Bergmeyer HU, Grassl M, Walter HE (1983) Methods of enzymatic analysis. Vol. II. Verlag Chemie, Deerfield Beach, pp 222–223

    Google Scholar 

  34. Barman TE (1969) Enzyme handbook. Springer Verlag, New York

    Google Scholar 

  35. Singh N, McCoy M, Tice R, Schneider E (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  36. Mustafa SA, Al-Subiai SN, Davies SJ, Jha AN (2011) Hypoxia-induced oxidative DNA damage links with higher level biological effects including specific growth rate in common carp, Cyprinus carpio L. Ecotoxicol. doi:10.1007/s10646-011-0702-5

  37. Kumaravel TS, Jha AN (2006) Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res 605:7–16

    PubMed  CAS  Google Scholar 

  38. Vincent JB (2007) The nutritional biochemistry of chromium (III). Elsevier, UK

    Google Scholar 

  39. Scott ML, Nesheim MC, Young RJ (1982) Nutrition of the chicken. Ml Scott and Associates, New York

    Google Scholar 

  40. Steel NC, Rosebrough RW (1981) Effect of trivalent chromium on hepatic lipogenesis by the turkey poult. Poult Sci 60:617–622

    Article  Google Scholar 

  41. Magzoub M, Al-Batshan HA, Hussein MF, Al-Mufarrej SI, Al-Saiady MY (2010) The effect of source and level of dietary chromium supplementation on performance, chemical composition and some metabolic aspects in hyprid tilapia fish (Oreochromis niloticus × O. aureus). Res J Biol Sci 5:164–170

    Article  Google Scholar 

  42. Jain KK, Sinha A, Srivastava PP, Berendra DK (1994) Chromium: an effecient growth enhancer in indian major carp, Labeo rohita. J Aqua Trop 9:49–54

    Google Scholar 

  43. Zha LY, Wang MQ, Xu ZR, Gu LY (2007) Efficacy of chromium (III) supplementation on growth, body composition, serum parameters, and tissue chromium in rats. Biol Trace Elem Res 119:42–50

    Article  PubMed  CAS  Google Scholar 

  44. Capilla E, Médale F, Panserat S, Vachot C, Rema P, Gomes E, Kaushik SI, Navarro I, Gutierrez J (2004) Response of hexokinase enzymes and the insulin system to dietary carbohydrates in the common carp, Cyprinus carpio. Reprod Nutr Dev 44:233–242

    Article  PubMed  CAS  Google Scholar 

  45. Lindahl T, Ljungquist T (1975) Apurimic and apurimidinic sites in DNA. In: Hanawalt PC, Setlow RB (eds) Molecular Mechanisms for repair of DNA, Part A. Plenum, New York, pp 31–38

    Chapter  Google Scholar 

  46. Mitchelmore CL, Chipman JK (1998) DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Res-Fund Mol M 399:135–147

    Article  CAS  Google Scholar 

  47. Lee RF, Steinert S (2003) Use of the single cell electrophoresis/comet assay for detecting DNA damage in aquatic (marine and fresh water) animals. Mutat Res 544:43–64

    Article  PubMed  CAS  Google Scholar 

  48. Steinert SA, Streib-Montee R, Leather JM, Chadwick DB (1998) DNA damage in mussels at sites in San Diego Bay. Mutat Res 399:65–85

    Article  PubMed  CAS  Google Scholar 

  49. CdS C, Fernandes MN (2008) Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comp Biochem Physiol A Mol Integr Physiol 151:437–42

    Article  Google Scholar 

  50. Enes P, Peres H, Couto A, Oliva-Teles A (2010) Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. Fish Physiol Biochem 36:903–10

    Article  PubMed  CAS  Google Scholar 

  51. Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med-Czech 52:1–18

    CAS  Google Scholar 

  52. Shiau SY, Liang HS (1995) Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus × o. aureus, are affected by chromic oxide inclusion in the diet. J Nutr 125:976–982

    PubMed  CAS  Google Scholar 

  53. Mela M, Randi MA, Ventura DF, Carvalho CEV, Pelletier E, Oliveira Ribeiro CA (2007) Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotoxicol Environ Safe 68:426–435

    Article  CAS  Google Scholar 

  54. Nogales Mérida S, Tomás-Vidal A, Martínez-Llorens S, Jover Cerdá M (2010) Sunflower meal as a partial substitute in juvenile sharpsnout sea bream (Diplodus puntazzo) diets: amino acid retention, gut and liver histology. Aquaculture 298:275–281

    Article  Google Scholar 

  55. Ferri J, Topic Popovic N, Coz-Rakovac R, Beer-Ljubic B, Strunjak-Perovic I, Skeljo F, Jadan M, Petric M, Barisic J, Simpraga M, Stanic R (2011) The effect of artificial feed on blood biochemistry profile and liver histology of wild saddled bream, Oblada melanura (Sparidae). Mar Environ Res 71:218–224

    Article  PubMed  CAS  Google Scholar 

  56. Handy RD, Sims DW, Giles A, Campbell HA, Musonda MM (1999) Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquat Toxicol 47:23–41

    Article  CAS  Google Scholar 

  57. Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, Carassius auratus. Mutat Res 698:43–51

    PubMed  CAS  Google Scholar 

  58. Kurtović B, Teskeredžić E, Teskeredžić Z (2008) Histological comparison of spleen and kidney tissue from farmed and wild European sea bass (Dicentrarchus labrax L.). Actaadriat 49:147–154

    Google Scholar 

Download references

Acknowledgements

The lead author is grateful to the Ministry of Higher Education and Scientific Research, government of the Republic of Iraq for their generous assistance and scholarship to support her Ph.D. in Fish Nutrition in the UK. The authors would like to thank Dr. Andrew Fisher for his assistance on chromium analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arafat R. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, A.R., Jha, A.N. & Davies, S.J. The Efficacy of Chromium as a Growth Enhancer for Mirror Carp (Cyprinus carpio L): An Integrated Study Using Biochemical, Genetic, and Histological Responses. Biol Trace Elem Res 148, 187–197 (2012). https://doi.org/10.1007/s12011-012-9354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9354-4

Keywords

Navigation