Skip to main content
Log in

Changes of IgA+ Cells and Cytokines in the Cecal Tonsil of Broilers Fed on Diets Supplemented with Vanadium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The cecal tonsil of broiler is known as a secondary lymphoid tissue, which is involved in antigen-specific humoral immune responses. The purpose of this study was to investigate the effects of dietary vanadium on the tissue distribution and quantity of immunoglobulin A-positive (IgA+) cell in the cecal tonsil by immunohistochemistry. Simultaneously, the changes in interleukin-6 (IL-6), interleukin-10 (IL-10), interferon gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) contents in the cecal tonsil were also quantified by enzyme-linked immunosorbent assay (ELISA). A total of 420 one-day-old avian broilers were divided into six groups and fed on a corn–soybean basal diet (control diet) or the same diet supplemented respectively with 5, 15, 30, 45, and 60 mg/kg of vanadium in the form of ammonium metavanadate for 42 days. The results showed that the population of the IgA+ cells in the cecal tonsil were significantly lower (p < 0.05 or p < 0.01) in the 45 and 60 mg/kg groups than that in the control group. Meanwhile, IL-10, IFN-γ and TNF-α contents in the cecal tonsil were significantly decreased (p < 0.05 or p < 0.01) in the 30, 45 and 60 mg/kg groups in comparison with those of the control group. However, IL-6 content in the cecal tonsil was only decreased (p < 0.05 or p < 0.01) in 60 mg/kg at 14 and 28 days of age. In conclusion, dietary vanadium in excess of 30 mg/kg reduced the numbers of the IgA+ cells and changed the contents of the abovementioned cytokines in the cecal tonsil, which may finally impact the function of local mucosal humoral immunity in broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen FH (1990) New essential trace elements for the life sciences. Biol Trace Elem Res 26–27(1):599–611

    Article  PubMed  Google Scholar 

  2. Stankiewicz PJ, Tracey AS, Crans DC (1995) Vanadium and its role in life. Metalions in biological systems, Vol 31. Marcel Dekker, New York, p 9

    Google Scholar 

  3. Milena JS, Snezana UM (2007) Compounds of Mo, V and W in biochemistry and their biomedical activity. Trace Elem Med Biol 21:8–16

    Article  Google Scholar 

  4. Liochev SI, Fridovich I (1990) Vanadate-stimulated oxidation of NAD (P) H in the presence of biological membranes and other sources of O 2 . Arch Biochem Biophys 279(1):1–7

    Article  PubMed  CAS  Google Scholar 

  5. Mravcová A, Jírová D, Jančí H et al (1993) Effects of orally administered vanadium on the immune system and bone metabolism in experimental animals. Sci Total Environ 134(1):663–669

    Google Scholar 

  6. Ding M, Li JJ, Leonard SS et al (1999) Vanadate-induced activation of activator protein-1 role of reactive oxygen species. Carcinogenesis 20:663–668

    Article  PubMed  CAS  Google Scholar 

  7. Jaspers I, Samet JM, Reed W (1999) Arsenite exposure of cultured airway epithelial cells activates kappa B-dependent interleukin-8 gene expression in the absence of nuclear factor-kappa B nuclear translocation. Biol Chem 274:31025–31033

    Article  CAS  Google Scholar 

  8. Ye J, Ding M, Zhang X, Rojanasakul Y et al (1999) Induction of TNF-alpha in macrophages by vanadate is dependent on activation of transcription factor N-F-kappa B and free radical reactions. Mol Cell Biochem 198:193–200

    Article  PubMed  CAS  Google Scholar 

  9. Cui W, Cui HM, Peng X et al (2011) Effect of vanadium on the subset and proliferation of peripheral blood T-cells and serum IL-2 content in broilers. Biol Trace Elem Res 141:192–199

    Article  PubMed  CAS  Google Scholar 

  10. Cui W, Cui HM, Peng X et al (2011) Excess dietary vanadium induces the changes of subsets and proliferation of splenic T cells in broilers. Biol Trace Elem Res 143(2):932–938

    Article  PubMed  CAS  Google Scholar 

  11. Cui W, Cui HM, Peng X et al (2011) Dietary excess vanadium induces lesions and changes of cell cycle of spleen in broilers. Biol Trace Elem Res 143(2):949–956

    Article  PubMed  CAS  Google Scholar 

  12. Cui W, Cui HM, Peng X et al (2011) Changes of relative weight and cell cycle, and lesions of bursa of Fabricius induced by dietary excess vanadium in broilers. Biol Trace Elem Res 143(1):251–260

    Article  PubMed  CAS  Google Scholar 

  13. Deng Y, Cui HM, Peng X et al (2011) Effect of dietary vanadium on cecal tonsil T-cells subsets and IL-2 contents in broilers. Biol Trace Elem Res. doi:10.1007/s12011-011-9018-9

  14. Deng Y, Cui HM, Peng X et al (2011) Dietary vanadium induces oxidative stress in the intestine of broilers. Biol Trace Elem Res. doi:10.1007/s12011-011-9163-1

  15. Mast J, Goddeeris BM (1999) Development of immune competence of broiler chickens. Vet Immunol Immunopathol 70:245–256

    Article  PubMed  CAS  Google Scholar 

  16. Naqi SA, Cook J, Sahin N (1984) Distribution of immunoglobulin-bearing cells in the gut-associated lymphoid tissues of the turkey: effect of oral treatment with intestinal microflora. Am Vet Res 45:21–35

    Google Scholar 

  17. Muir WI, Bryden WL, Husband AJ (2000) Immunity, vaccination and the avian intestinal tract. Dev Comp Immunol 24:325–342

    Article  PubMed  CAS  Google Scholar 

  18. Rothwell L, Gramzinski RA, Rose ME, Kaiser P (1995) Avian coccidiosis: changes in intestinal lymphocyte populations associated with the development of immunity to Eimeria maxima. Parasite Immunol 17:525–533

    Article  PubMed  CAS  Google Scholar 

  19. Klipper E, Sklan D, Friedman A (2000) Immune response of chickens to dietary protein antigens. Vet Immunol Immunopathol 74:209–233

    Article  PubMed  CAS  Google Scholar 

  20. Lillehoj HS, Trout JM (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev 9:349–360

    PubMed  CAS  Google Scholar 

  21. Albini B, Wick G (1974) Delineation of B and T lymphoid cells in the chicken. Immunology 112(2):444–461

    CAS  Google Scholar 

  22. Hoshi H, Mori T (1973) Identification of the bursa-dependent and thymus-dependent areas in the tonsil caecal of chickens. Tohoku Exp Med 111(4):309–320

    Article  CAS  Google Scholar 

  23. Macpherson AJ, McKoy KD, Johansen FE et al (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    Article  PubMed  CAS  Google Scholar 

  24. Mestecky J, Russell MW, Elson CO (1999) Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 44:2–5

    Article  PubMed  CAS  Google Scholar 

  25. Andrea C, Maria R (2008) The biology of intestinal immunoglobulin a responses. Immunity 28(6):740–750

    Article  Google Scholar 

  26. Mulder IE, Wadsworth S, Secombes CJ (2007) Cytokine expression in the intestine of rainbow trout (Oncorhynchus mykiss) during infection with Aeromonas salmonicida. Fish Shellfish Immunol 23:747–759

    Article  PubMed  CAS  Google Scholar 

  27. NRC (1994) Nutrient requirements of domestic animals. Nutrient requirements of poultry, 9th edn. National Academy of Science, Washington, DC

    Google Scholar 

  28. Yang SB, Zhang YN, Gao JJ et al (2009) Development of B lymphocytes in caecal tonsil of chicken. Chin Vet Sci 39(11):999–1002

    Google Scholar 

  29. Gaca MD, Pickering JA, Arthur MJ, Benyon RC (1999) Human and rat hepatic stellate cells produce stem cell factor: a possible mechanism for mast cell recruitment in liver fibrosis. Hepatology 30:850–858

    Article  CAS  Google Scholar 

  30. Gallego M, Cacho ED, Bascuas JA (1995) Antigen-binding cells in the cecal tonsils and Peyer’s patches of the chicken after bovine serum albumin administration. Poult Sci 74:472–479

    Article  PubMed  CAS  Google Scholar 

  31. Olah I, Glick B, Taylor RL (1984) Meckel’s diverticulum: II. A novel lymphoepithelial organ in the chicken. Anat Rec 208:253–263

    Article  PubMed  CAS  Google Scholar 

  32. Wang ZX, Se RP (2004) The effect of zinc and selenium levels on the structure of cecal tonsil. Chin Vet Med 24(7):10–13

    Google Scholar 

  33. Albanese CT, Smith SD, Watkins S et al (1994) Effect of secretory IgA on transepithelial passage of bacteria across the intact ileum in vitro. Am Coll Surg 179:679–688

    CAS  Google Scholar 

  34. Parth B, Amin MD, Lawrence N et al (2007) T-cell cytokines affect mucosal immunoglobulin A transport. Am Surg 194:128–133

    Article  Google Scholar 

  35. Del CE, Gall EM, Sanz A et al (1993) Characterization of distal lymphoid nodules in the chicken caecum. Anat Rec 237(4):512–517

    Article  Google Scholar 

  36. Lili HS, Trou JM (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev 9(3):349–360

    Google Scholar 

  37. Wang CH (2001) Progress on the study of gut-immune system in chicken. Anim Sci Abroad 28:48–51

    Google Scholar 

  38. Cerutti A (2008) Location, location, location: B-cell differentiation in the gut lamina propria. Mucosal Immunol 1:8–10

    Article  PubMed  CAS  Google Scholar 

  39. Ng LG, Ng CH, Woehl B et al (2006) BAFF costimulation of Toll-like receptor-activated B-1 cells. Eur Immunol 36:1837–1846

    Article  CAS  Google Scholar 

  40. Fagarasan S, Kinoshita K, Muramatsu M et al (2001) In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413:639–643

    Article  PubMed  CAS  Google Scholar 

  41. Phillips JO, Everson MP, Moldoveanu Z et al (1990) Synergistic effect of IL-4 and IFN-gamma on the expression of polymeric Ig receptor (secretory component) and IgA binding by human epithelial cells. Immunology 145:1740–1744

    CAS  Google Scholar 

  42. Wu Y, Kudsk KA, DeWitt C et al (1999) Route and type of nutrition influence IgA-mediating intestinal cytokines. Ann Surg 229:662–668

    Article  PubMed  CAS  Google Scholar 

  43. Guo W, Ding J, Huang Q et al (1995) Alterations in intestinal bacterial flora modulate the systemic cytokine response to hemorrhagic shock. Am Physiol 32:827–832

    Google Scholar 

  44. Shang HF, Wang YY, Lai YN et al (2004) Effects of arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin Nutr 23:561–569

    Article  PubMed  CAS  Google Scholar 

  45. Kudsk KA (2001) Importance of enteral feeding in maintaining gut integrity. Tech Gastrointest Endosc 3(1):2–8

    Article  Google Scholar 

  46. Sato A, Hashiguchi M, Toda E et al (2003) CD11b+ Peyer’s patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. Immunology 171:3684–3690

    CAS  Google Scholar 

  47. Strober W, Fagarasan S, Lycke N (2005) IgA B cell development. In: Mesteccky J, Lamm ME, Strober W et al (eds) Mucosal immunology. Elsevier, Amsterdam, pp 583–616

    Chapter  Google Scholar 

Download references

Acknowledgements

The study was supported by the program for Changjiang scholars and innovative research team in university (IRT 0848) and the Education Department and Scientific department of Sichuan Province (09ZZ017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengmin Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Cui, H., Peng, X. et al. Changes of IgA+ Cells and Cytokines in the Cecal Tonsil of Broilers Fed on Diets Supplemented with Vanadium. Biol Trace Elem Res 147, 149–155 (2012). https://doi.org/10.1007/s12011-012-9330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9330-z

Keywords

Navigation