Skip to main content
Log in

A Multi-Mineral Natural Product Inhibits Liver Tumor Formation in C57BL/6 Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

C57BL/6 mice were maintained for up to 18 months on high-fat and low-fat diets with or without a multi-mineral supplement derived from the skeletal remains of the red marine algae Lithothamnion calcareum. Numerous grossly observable liver masses were visible in animals on the “western-style” high-fat diet sacrificed at 12 and 18 months. The majority of the masses were in male mice (20 out of 100 males versus 3 out of 100 females; p = 0.0002). There were more liver masses in animals on the high-fat diet than on the low-fat diet (15 out of 50 on high-fat versus 5 out of 50 on low-fat; p = 0.0254). The multi-mineral supplement reduced the number of liver masses in mice on both diets (3 out of 25 male mice in the low-fat diet group without the supplement versus 1 out of 25 mice with supplement; 12 of 25 male mice in the high-fat diet group without the supplement versus 3 of 25 mice with supplement [p = 0.0129]). Histological evaluation revealed a total of 17 neoplastic lesions (9 adenomas and 8 hepatocellular carcinomas), and 18 pre-neoplastic lesions. Out of eight hepatocellular carcinomas, seven were found in unsupplemented diet groups. Steatosis was widely observed in livers with and without grossly observable masses, but the multi-mineral supplement had no effect on the incidence of steatosis or its severity. Taken together, these findings suggest that a multi-mineral-rich natural product can protect mice against neoplastic and pre-neoplastic proliferative liver lesions that may develop in the face of steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hashimoto E, Tokushige K (2011) Hepatocellular carcinoma in non-alcoholic steatohepatitis: growing evidence of an epidemic? Hepatol Res. doi:10.1111/j.1872-034X.2011.00872.x

  2. Ertle J, Dechêne A, Sowa JP et al (2011) Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 128:2436–2443

    Article  PubMed  CAS  Google Scholar 

  3. Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51:1820–1832

    Article  PubMed  Google Scholar 

  4. DeLeve LD, Wang X, Kanel GC, Atkinson RD, McCuskey RS (2008) Prevention of hepatic fibrosis in a murine model of metabolic syndrome with nonalcoholic steatohepatitis. Am J Pathol 173:993–1001

    Article  PubMed  CAS  Google Scholar 

  5. Deng QG, She H, Cheng JH et al (2005) Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 42:905–914

    Article  PubMed  CAS  Google Scholar 

  6. Charlton M, Krishnan A, Viker K et al (2011) The fast food diet mouse—a novel small animal model of NASH with high histologic and physiologic fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. doi:10.1152/ajpgi.00145

  7. Ito M, Suzuki J, Tsujioka S et al (2007) Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res 37:50–57

    Article  PubMed  CAS  Google Scholar 

  8. Ogasawara M, Hirose A, Ono M et al (2011) A novel and comprehensive mouse model of human non-alcoholic steatohepatitis with the full range of dysmetabolic and histological abnormalities induced by gold thioglucose and a high-fat diet. Liver Int 31:542–551

    Article  PubMed  CAS  Google Scholar 

  9. Stauffer JK, Scarzello AJ, Andersen JB et al (2011) Coactivation of AKT and β-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res 71:2718–2727

    Article  PubMed  CAS  Google Scholar 

  10. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16

    Article  PubMed  CAS  Google Scholar 

  11. Soga M, Hashimoto S, Kishimoto Y, Hirasawa T, Makino S, Inagaki S (2010) Insulin resistance, steatohepatitis, and hepatocellular carcinoma in a new congenic strain of Fatty Liver Shionogi (FLS) mice with the Lep ob gene. Exp Anim 59:407–419

    Article  PubMed  CAS  Google Scholar 

  12. Hill-Baskin AE, Markiewski MM, Buchner DA et al (2009) Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet 18:2975–2988

    Article  PubMed  CAS  Google Scholar 

  13. Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma KN (1998) Eating patterns and risk of colon cancer. Am J Epidemiol 148:4–16

    Article  PubMed  CAS  Google Scholar 

  14. Meyerhardt JA, Niedzwiecki D, Hollis D et al (2007) Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. JAMA 298:754–764

    Article  PubMed  CAS  Google Scholar 

  15. Potter JD (1995) Risk factors for colon neoplasia—epidemiology and biology. Eur J Cancer 31:1033–1038

    Article  Google Scholar 

  16. Aslam MN, Paruchuri T, Bhagavathula N, Varani J (2010) A mineral-rich red algae extract inhibits polyp formation and inflammation in the gastrointestinal tract of mice on a high-fat diet. Integr Cancer Res 9:93–99

    Article  Google Scholar 

  17. Adey WH, McKibbin DL (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium corallioides Crouan in the Ria de Vigo. Bot Mar 13:100–106

    Article  Google Scholar 

  18. Newmark HL, Yang K, Lipkin M et al (2001) A Western-style diet induces benign and malignant neoplasms in the colon of normal C57BI/6 mice. Carcinogenesis 22:1871–1875

    Article  PubMed  CAS  Google Scholar 

  19. Thoolen B, Maronpot RR, Harada T et al (2010) Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 38:5S–81S

    Article  PubMed  Google Scholar 

  20. Kushida M, Kamendulis LM, Peat TJ, Klaunig JE (2011) Dose-related induction of hepatic preneoplastic lesions by diethylnitrosamine in C57Bl/6 mice. Toxicol Pathol 39:776–786

    Article  PubMed  CAS  Google Scholar 

  21. Caldwell SH, Crespo DM (2004) The spectrum expanded: cryptogenic cirrhosis and natural history of non-alcoholic fatty liver disease. J Hepatol 40:578–584

    Article  PubMed  Google Scholar 

  22. Shimada M, Hashimoto E, Taniai E et al (2002) Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol 37:154–160

    Article  PubMed  Google Scholar 

  23. Demigne C, Bloch-Faure M, Picard N et al (2006) Mice chronically fed a westernized experimental diet as a model of obesity, metabolic syndrome and osteoporosis. Eur J Nutr 45:298–306

    Article  PubMed  CAS  Google Scholar 

  24. Denda A, Kitayama W, Kishida H et al (2002) Development of hepatocellular adenomas and carcinomas associated with fibrosis in C57BL/6J male mice given a choline-deficient, l-amino acid-defined diet. Jpn J Cancer Res 93:125–132

    Article  PubMed  CAS  Google Scholar 

  25. McCullough ML, Robertson AS, Rodriguez C et al (2003) Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States). Cancer Causes Control 14:1–12

    Article  PubMed  Google Scholar 

  26. Flood A, Peters U, Chatterjee N, Lacey JV Jr, Schairer C, Schatzkin A (2005) Calcium from diet and supplements is associated with reduced risk of colorectal cancer in a prospective cohort of women. Cancer Epidemiol Biomarkers Prev 14:126–132

    PubMed  CAS  Google Scholar 

  27. Wakai K, Hirose K, Matsuo K et al (2006) Dietary risk factors for colon and rectal cancers: a comparative case–control study. J Epidemiol 16:125–135

    Article  PubMed  Google Scholar 

  28. Bostick RM, Potter JD, Sellers TA, McKenzie DR, Kushi LH, Folsom AR (1993) Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa Women's Health Study. Am J Epidemiol 137:1302–1317

    PubMed  CAS  Google Scholar 

  29. Kampman E, Giovannucci E, van’t Veer P et al (1994) Calcium, vitamin D, dairy foods, and the occurrence of colorectal adenomas among men and women in two prospective studies. Am J Epidemiol 139:16–29

    PubMed  CAS  Google Scholar 

  30. Kampman E, Slattery ML, Caan B, Potter JD (2000) Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). Cancer Causes Control 11:459–466

    Article  PubMed  CAS  Google Scholar 

  31. Baron JA, Beach M, Mandel JS et al (1999) Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. N Engl J Med 340:101–107

    Article  PubMed  CAS  Google Scholar 

  32. Grau MV, Baron JA, Sandler RS et al (2003) Vitamin D, calcium supplementation, and colorectal adenomas: results of a randomized trial. J Natl Cancer Inst 95:1765–1771

    Article  PubMed  CAS  Google Scholar 

  33. Yang K, Kurihara N, Fan K et al (2008) Dietary induction of colonic tumors in a mouse model of sporadic colon cancer. Cancer Res 68:7803–7810

    Article  PubMed  CAS  Google Scholar 

  34. Newmark HL, Yang K, Kurihara N, Fan K, Augenlicht LH, Lipkin M (2009) Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57BI/6 mice: a preclinical model for human sporadic colon cancer. Carcinogenesis 30:88–92

    Article  PubMed  CAS  Google Scholar 

  35. Chen W-Y, Chen C-J, Liao J-W, Mao FC (2009) Chromium attenuates hepatic damage in a rat model of chronic cholestasis. Life Sci 84:606–614

    Article  PubMed  CAS  Google Scholar 

  36. Chen W-Y, Chen C-J, Liu C-H, Mao FC (2010) Chromium attenuates high-fat diet-induced nonalcoholic fatty liver disease in KK/HIJ mice. Biochem Biophys Res Commun 397:459–464

    Article  PubMed  CAS  Google Scholar 

  37. Alwahaibi N, Mohamed J, Alhamadani A (2010) Supplementation of selenium reduces chemical hepatocarcinogenesis in male Sprague–Dawley rats. J Trace Elem Biol Med 24:119–123

    Article  CAS  Google Scholar 

  38. Kang X, Zhong W, Liu J et al (2009) Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4α and peroxisome proliferator-activated receptor-α. Hepatology 50:1241–1250

    Article  PubMed  CAS  Google Scholar 

  39. Chakrabarty S, Radjendirane V, Appelman H, Varani J (2003) Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of β-catenin/TCF activation. Cancer Res 63:67–71

    PubMed  CAS  Google Scholar 

  40. Chakrabarty S, Wang H, Canaff L, Hendy GN, Appelman H, Varani J (2005) Calcium sensing receptor in human colon carcinoma: interaction with Ca2+ and 1,25-dihydroxyvitamin D3. Cancer Res 65:493–498

    PubMed  CAS  Google Scholar 

  41. Bhagavathula N, Hanosh AW, Nerusu KC et al (2007) Regulation of E-cadherin and β-catenin by Ca2+ in colon carcinoma is dependent on calcium-sensing receptor expression and function. Int J Cancer 121:1455–1462

    Article  PubMed  CAS  Google Scholar 

  42. Huang Y, Zhou Y, Castiblanco A et al (2009) Multiple Ca(2+)-binding sites in the extracellular domain of the Ca(2+)-sensing receptor corresponding to cooperative Ca(2+) response. Biochemistry 48:388–398

    Article  PubMed  CAS  Google Scholar 

  43. Ward DT, Brown EM, Harris HW (1998) Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation and its response to divalent cations in vitro. J Biol Chem 273(23):14476–14483

    Article  PubMed  CAS  Google Scholar 

  44. McLarnon SJ, Riccardi D (2002) Physiological and pharmacological agonists of the extracellular Ca2+-sensing receptor. Eur J Pharmacol 447:271–278

    Article  PubMed  CAS  Google Scholar 

  45. Riccardi D, Maldonado-Perez D (2005) The calcium-sensing receptor as a nutrient sensor. Biochem Soc Trans 33:316–320

    Article  PubMed  CAS  Google Scholar 

  46. Aslam MN, Bhagavathula N, Chakrabarty S, Varani J (2009) Growth-inhibitory effects of Aquamin, a mineralized extract from the red algae, Lithothamnion calcerum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells. Cancer Lett 283(2):186–192

    Article  PubMed  CAS  Google Scholar 

  47. Jenkins W, Perone P, Walker K et al (2011) Fibroblast response to lanthanoid metal ion stimulation: potential contribution to fibrotic tissue injury. Biol Trace Elem Res 141:621–635

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by grant CA140760 from the National Institutes of Health, Bethesda, MD, and by grant 11-0577 from the Association for International Cancer Research, St. Andrews, Fife, Scotland.

The authors would like to acknowledge Ron Craig (Histomorphometry Core) for his ScanScope services and Mark Deming of The Pathology Imaging Facility. The core laboratories are supported by the Department of Pathology at the University of Michigan. The authors would also like to thank Marigot, Ltd. (Cork, Ireland) for providing the multi-mineral supplement (Aquamin®) as a gift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad N. Aslam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Table 1

Composition of the mineral-rich extract (DOC 44 kb)

Supplement Table 2

Composition of the four diets (DOC 66 kb)

Supplement Table 3

Average weight by diet group at 18 months (DOC 27 kb)

Supplement Table 4

Serum and bone calcium levels (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslam, M.N., Bergin, I., Naik, M. et al. A Multi-Mineral Natural Product Inhibits Liver Tumor Formation in C57BL/6 Mice. Biol Trace Elem Res 147, 267–274 (2012). https://doi.org/10.1007/s12011-011-9316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9316-2

Keywords

Navigation