Skip to main content
Log in

The Ratio of sTfR/Ferritin is Associated with the Expression Level of TfR in Rat Bone Marrow Cells After Endurance Exercise

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Currently, it is unclear which index of haematological parameters could be used to most easily monitor iron deficiency during endurance training. To address this question, 16 male Wistar rats were randomly assigned to two groups: a sedentary group (n = 8) and an exercised group (n = 8). Initially, animals in the exercise group started running on a treadmill at a rate of 30 m/min, on a 0% grade, for 1 min/session. Running time was gradually increased by 2 min/day. The training plan was one session per day during the initial 2 weeks and two sessions per day during the third to ninth week. At the end of the 9-week experiment, we analysed the blood of the experimental animals for haemoglobin levels, erythrocyte numbers, haematocrit, serum iron levels, total iron binding capacity, transferrin saturation, serum ferritin levels and soluble transferrin receptor (sTfR) levels, and we calculated the ratio of sTfR/ferritin. Erythrocyte numbers, haemoglobin levels and haematocrit values were decreased after 9 weeks of exercise, but sTfR and sTfR/ferritin values were increased (P < 0.01 or P < 0.05). The training regime significantly increased TfR mRNA levels in the bone marrow cells of the exercised rats compared with the sedentary group (1.8 ± 0.5 vs. 1.1 ± 0.2, P < 0.01). These results revealed a significant correlation between TfR levels in the bone marrow cells and the ratio of sTfR/ferritin (r = 0.517; P < 0.01) and sTfR levels (r = 0.206; P < 0.05) in sedentary and exercised rats. In conclusion, we show that sTfR indices and the ratio of sTfR/ferritin could be useful indicators for monitoring iron deficiency during endurance training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Peeling P (2010) Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol 110(5):877–883

    Article  PubMed  CAS  Google Scholar 

  2. Clarkson PM, Haymes EM (1995) Exercise and mineral status of athletes: calcium, magnesium, phosphorus, and iron. Med Sci Sports Exerc 27(6):831–843

    PubMed  CAS  Google Scholar 

  3. Qian ZM, Xiao DS, Tang PL, Yao FY, Liao QK (1999) Increased expression of transferrin receptor on membrane of erythroblasts in strenuously exercised rats. J Appl Physiol 87(2):523–529

    PubMed  CAS  Google Scholar 

  4. Newhouse IJ, Clement DB (1988) Iron status in athletes. An update Sports Med 5(6):337–352

    CAS  Google Scholar 

  5. Naziroglu M, Simsek M, Kutlu M (2004) Moderate exercise with a dietary vitamin C and E combination protects against streptozotocin-induced oxidative damage to the blood and improves fetal outcomes in pregnant rats. Clin Chem Lab Med 42(5):511–517

    Article  PubMed  CAS  Google Scholar 

  6. Naziroglu M, Butterworth PJ (2005) Protective effects of moderate exercise with dietary vitamin C and E on blood antioxidative defense mechanism in rats with streptozotocin-induced diabetes. Can J Appl Physiol 30(2):172–185

    Article  PubMed  CAS  Google Scholar 

  7. Di Santolo M, Stel G, Banfi G, Gonano F, Cauci S (2008) Anemia and iron status in young fertile non-professional female athletes. Eur J Appl Physiol 102(6):703–709

    Article  PubMed  Google Scholar 

  8. Deruisseau KC, Roberts LM, Kushnick MR, Evans AM, Austin K, Haymes EM (2004) Iron status of young males and females performing weight-training exercise. Med Sci Sports Exerc 36(2):241–248

    Article  PubMed  Google Scholar 

  9. Beard J, Tobin B (2000) Iron status and exercise. Am J Clin Nutr 72(2 Suppl):594S–597S

    PubMed  CAS  Google Scholar 

  10. Malczewska J, Szczepanska B, Stupnicki R, Sendecki W (2001) The assessment of frequency of iron deficiency in athletes from the transferrin receptor-ferritin index. Int J Sport Nutr Exerc Metab 11(1):42–52

    PubMed  CAS  Google Scholar 

  11. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP (2010) Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am J Clin Nutr 92(3):546–555

    Article  PubMed  CAS  Google Scholar 

  12. Phiri KS, Calis JC, Kachala D, Borgstein E, Waluza J, Bates I, Brabin B, van Hensbroek MB (2009) Improved method for assessing iron stores in the bone marrow. J Clin Pathol 62(8):685–689

    Article  PubMed  CAS  Google Scholar 

  13. Mullner EW, Neupert B, Kuhn LC (1989) A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58(2):373–382

    Article  PubMed  CAS  Google Scholar 

  14. Iacopetta BJ, Morgan EH, Yeoh GC (1982) Transferrin receptors and iron uptake during erythroid cell development. Biochim Biophys Acta 687(2):204–210

    Article  PubMed  CAS  Google Scholar 

  15. Skikne BS (2008) Serum transferrin receptor. Am J Hematol 83(11):872–875

    Article  PubMed  CAS  Google Scholar 

  16. Berlin T, Meyer A, Rotman-Pikielny P, Natur A, Levy Y (2011) Soluble transferrin receptor as a diagnostic laboratory test for detection of iron deficiency anemia in acute illness of hospitalized patients. Isr Med Assoc J 13(2):96–98

    PubMed  Google Scholar 

  17. Munoz M, Garcia-Erce JA, Remacha AF (2011) Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis. J Clin Pathol 64(4):281–286

    Article  PubMed  CAS  Google Scholar 

  18. Goodnough LT, Skikne B, Brugnara C (2000) Erythropoietin, iron, and erythropoiesis. Blood 96(3):823–833

    PubMed  CAS  Google Scholar 

  19. Jain S, Narayan S, Chandra J, Sharma S, Malhan P (2010) Evaluation of serum transferrin receptor and sTfR ferritin indices in diagnosing and differentiating iron deficiency anemia from anemia of chronic disease. Indian J Pediatr 77(2):179–183

    Article  PubMed  Google Scholar 

  20. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, Dhingra U, Kabole I, Deb S, Othman MK, Kabole FM (2006) Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367(9505):133–143

    Article  PubMed  CAS  Google Scholar 

  21. Zhao J, Tian Y, Xu J, Liu D, Wang X, Zhao B (2011) Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. Lipids Health Dis 10(1):225

    Article  PubMed  CAS  Google Scholar 

  22. Ohsako M, To H, Nakamura C, Yamada M, Tsuzuki O, Tatsuo E, Nakashima T, Hirai M, Sasaki H, Ichikawa M, Matsuya F, Saito Y (1998) Change in erythrocyte shape induced by cyclosporine administration. Biol Pharm Bull 21(11):1236–1239

    Article  PubMed  CAS  Google Scholar 

  23. Yang HY, Jeong DK, Kim SH, Chung KJ, Cho EJ, Jin CH, Yang U, Lee SR, Lee DS, Lee TH (2008) Gene expression profiling related to the enhanced erythropoiesis in mouse bone marrow cells. J Cell Biochem 104(1):295–303

    Article  PubMed  CAS  Google Scholar 

  24. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi M, Yamauchi A, Nishimura M, Ueda N, Naito S (2005) Soybean oil fat emulsion prevents cytochrome P450 mRNA down-regulation induced by fat-free overdose total parenteral nutrition in infant rats. Biol Pharm Bull 28(1):143–147

    Article  PubMed  CAS  Google Scholar 

  26. Nishimura M, Ueda N, Naito S (2003) Effects of dimethyl sulfoxide on the gene induction of cytochrome P450 isoforms, UGT-dependent glucuronosyl transferase isoforms, and ABCB1 in primary culture of human hepatocytes. Biol Pharm Bull 26(7):1052–1056

    Article  PubMed  CAS  Google Scholar 

  27. Nishimura M, Imai T, Morioka Y, Kuribayashi S, Kamataki T, Naito S (2004) Effects of NO-1886 (Ibrolipim), a lipoprotein lipase-promoting agent, on gene induction of cytochrome P450s, carboxylesterases, and sulfotransferases in primary cultures of human hepatocytes. Drug Metab Pharmacokinet 19(6):422–429

    Article  PubMed  CAS  Google Scholar 

  28. Zhao JX, Tian Y, Cao JMLJ (2004) Effect of different exercise on hemoglobin levels in rats—an animal model of sports anemia. Ch J Sports Med (China) 23(4):436–440

    Google Scholar 

  29. Broadbent S (2011) Seasonal changes in haematology, lymphocyte transferrin receptors and intracellular iron in Ironman triathletes and untrained men. Eur J Appl Physiol 111(1):93–100

    Article  PubMed  CAS  Google Scholar 

  30. Cappelli K, Felicetti M, Capomaccio S, Spinsanti G, Silvestrelli M, Supplizi AV (2008) Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol Biol 9:49

    Article  PubMed  Google Scholar 

  31. Li YQ, Yan H, Bai B (2008) Change in iron transporter expression in human term placenta with different maternal iron status. Eur J Obstet Gynecol Reprod Biol 140(1):48–54

    Article  PubMed  CAS  Google Scholar 

  32. Che LL, Xiao DS, Xu HX, Lu L (2011) Changes of iron stores and duodenal transepithelial iron transfer during regular exercise in rats. Biol Trace Elem Res 143(2):1044–1053

    Article  PubMed  CAS  Google Scholar 

  33. Frank MK, Esteves AM, Lopes C, Cavagnolli DA, Tufik S, de Mello MT (2011) The effects of physical exercise on the serum iron profile in spontaneously hypertensive rats. Biol Trace Elem Res. doi:10.1007/s12011-011-9188-5

  34. Nikolaidis MG, Michailidis Y, Mougios V (2003) Variation of soluble transferrin receptor and ferritin concentrations in human serum during recovery from exercise. Eur J Appl Physiol 89(5):500–502

    Article  PubMed  CAS  Google Scholar 

  35. Abellan R, Ventura R, Pichini S, Palmi I, Bellver M, Olive R, Pacifici R, Pascual JA, Zuccaro P, Segura J (2007) Effect of physical fitness and endurance exercise on indirect biomarkers of recombinant erythropoietin misuse. Int J Sports Med 28(1):9–15

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen OJ, Andersen LS, Hansen NE, Hansen TM (1994) Serum transferrin receptor levels in anaemic patients with rheumatoid arthritis. Scand J Clin Lab Invest 54(1):75–82

    Article  PubMed  CAS  Google Scholar 

  37. Karlsson T, Sjoo F, Kedinge-Cyrus B, Backstrom B (2010) Plasma soluble transferrin receptor assay when screening for iron-deficiency in an unselected population of elderly anaemic patients. J Intern Med 267(3):331–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Natural Science Foundation of China (30270642) and the Foundation of China Society of Sport Science (2005-04). The authors thank Xiaofang Wang, Kimberly A. Hubing, Yongsheng Zhu and James Pearson for their assistance in editing with respect to English style. The authors also wish to thank The Genomics and Bioinformatics Center Chinese Academy of Science for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiexiu Zhao.

Additional information

Jiexiu Zhao and Ye Tian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Zhao, J., Zhao, B. et al. The Ratio of sTfR/Ferritin is Associated with the Expression Level of TfR in Rat Bone Marrow Cells After Endurance Exercise. Biol Trace Elem Res 147, 261–266 (2012). https://doi.org/10.1007/s12011-011-9312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9312-6

Keywords

Navigation