Cord Blood Levels of Toxic and Essential Trace Elements and Their Determinants in the Terai Region of Nepal: A Birth Cohort Study


The purpose of this study is to evaluate the cord blood level of toxic and trace elements and to identify their determinants in Terai, Nepal. One hundred pregnant women were recruited from one hospital in Chitwan, Nepal in 2008. The cord blood levels of toxic [lead (Pb), arsenic (As), and cadmium (Cd)], essential trace elements [zinc (Zn), selenium (Se), and copper (Cu)], demographic, socioeconomic, and behavioral variables were measured. The mean values of Pb, As, Cd, Zn, Se, and Cu in cord blood level were found as 31.7, 1.46, 0.39, 2,286, 175, and 667 μg/L, respectively. In the multivariate regression model, cord blood As levels from less educated mothers were higher than those from educated mothers (coefficient = 0.01, 95% confidence interval [CI] = 0.02–0.00). The maternal age was positively associated with the cord blood Cd level (coefficient = 0.02, 95% CI = 0.01–0.03), while it was negatively associated with the cord blood As level (coefficient = 0.01, 95% CI = 0.03–0.01). Cord blood levels of Pb, Zn, Se, and Cu were not associated with maternal age, socioeconomic status, living environment, and smoking status. As and Cd levels were relatively lower than those reported in previous studies in Asia, while the levels of Pb and the trace elements were similar. Less educated mothers are more likely to become a higher in utero As source to their fetus, and fetuses of older mothers were more likely to have higher in utero Cd exposure in Terai, Nepal.

This is a preview of subscription content, access via your institution.


  1. 1.

    Hill DS, Wlodarczyk BJ, Finnell RH (2008) Reproductive consequences of oral arsenate exposure during pregnancy in a mouse model. Birth Defects Res B Dev Reprod Toxicol 83(1):40–47. doi:10.1002/bdrb.20142

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Hill DS, Wlodarczyk BJ, Mitchell LE, Finnell RH (2009) Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model. Toxicol Appl Pharmacol 239(1):29–36. doi:10.1016/j.taap.2009.05.009

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Regan CM (1989) Lead-impaired neurodevelopment. Mechanisms and threshold values in the rodent. Neurotoxicol Teratol 11(6):533–537

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bhatnagar S, Natchu UC (2004) Zinc in child health and disease. Indian J Pediatr 71(11):991–995

    PubMed  Article  Google Scholar 

  5. 5.

    Jedrychowski W, Perera F, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, Edwards S, Skarupa A, Lisowska-Miszczyk I (2009) Gender specific differences in neurodevelopmental effects of prenatal exposure to very low-lead levels: the prospective cohort study in three-year olds. Early Hum Dev 85(8):503–510. doi:10.1016/j.earlhumdev.2009.04.006

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Jedrychowski W, Perera F, Jankowski J, Rauh V, Flak E, Caldwell KL, Jones RL, Pac A, Lisowska-Miszczyk I (2008) Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study). Int J Hyg Environ Health 211(3–4):345–351. doi:10.1016/j.ijheh.2007.07.023

    PubMed  Article  Google Scholar 

  7. 7.

    Jedrychowski W, Perera FP, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, Edwards S, Skarupa A, Lisowska-Miszczyk I (2009) Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Krakow prospective cohort study. Neuroepidemiology 32(4):270–278. doi:10.1159/000203075

    PubMed  Article  Google Scholar 

  8. 8.

    Patel AB, Mamtani MR, Thakre TP, Kulkarni H (2006) Association of umbilical cord blood lead with neonatal behavior at varying levels of exposure. Behav Brain Funct 2:22. doi:10.1186/1744-9081-2-22

    PubMed  Article  Google Scholar 

  9. 9.

    Bellinger D, Leviton A, Waternaux C, Allred E (1985) Methodological issues in modeling the relationship between low-level lead exposure and infant development: examples from the Boston Lead Study. Environ Res 38(1):119–129

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Dietrich KN, Krafft KM, Bornschein RL, Hammond PB, Berger O, Succop PA, Bier M (1987) Low-level fetal lead exposure effect on neurobehavioral development in early infancy. Pediatrics 80(5):721–730

    PubMed  CAS  Google Scholar 

  11. 11.

    Ernhart CB, Morrow-Tlucak M, Marler MR, Wolf AW (1987) Low level lead exposure in the prenatal and early preschool periods: early preschool development. Neurotoxicol Teratol 9(3):259–270

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Cooney GH, Bell A, McBride W, Carter C (1989) Neurobehavioural consequences of prenatal low level exposures to lead. Neurotoxicol Teratol 11(2):95–104

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    McMichael AJ, Baghurst PA, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ (1988) Port Pirie Cohort Study: environmental exposure to lead and children’s abilities at the age of four years. N Engl J Med 319(8):468–475. doi:10.1056/nejm198808253190803

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Tofail F, Vahter M, Hamadani JD, Nermell B, Huda SN, Yunus M, Rahman M, Grantham-McGregor SM (2009) Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ Health Perspect 117(2):288–293. doi:10.1289/ehp.11670

    PubMed  CAS  Google Scholar 

  15. 15.

    Kirksey A, Rahmanifar A, Wachs TD, McCabe GP, Bassily NS, Bishry Z, Galal OM, Harrison GG, Jerome NW (1991) Determinants of pregnancy outcome and newborn behavior of a semirural Egyptian population. Am J Clin Nutr 54(4):657–667

    PubMed  CAS  Google Scholar 

  16. 16.

    Friel JK, Andrews WL, Matthew JD, Long DR, Cornel AM, Cox M, McKim E, Zerbe GO (1993) Zinc supplementation in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr 17(1):97–104

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Castillo-Duran C, Perales CG, Hertrampf ED, Marin VB, Rivera FA, Icaza G (2001) Effect of zinc supplementation on development and growth of Chilean infants. J Pediatr 138(2):229–235

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Buchet JP, Roels H, Hubermont G, Lauwerys R (1978) Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. II. Influence of some epidemiological factors on the frequency distributions of the biological indices in maternal and umbilical cord blood. Environ Res 15(3):494–503

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Conroy LM, Menezes-Lindsay RM, Sullivan PM, Cali S, Forst L (1996) Lead, chromium, and cadmium exposure during abrasive blasting. Arch Environ Health 51(2):95–99

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Iijima K, Otake T, Yoshinaga J, Ikegami M, Suzuki E, Naruse H, Yamanaka T, Shibuya N, Yasumizu T, Kato N (2007) Cadmium, lead, and selenium in cord blood and thyroid hormone status of newborns. Biol Trace Elem Res 119(1):10–18. doi:10.1007/s12011-007-0057-1

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Tsuchiya H, Mitani K, Kodama K, Nakata T (1984) Placental transfer of heavy metals in normal pregnant Japanese women. Arch Environ Health 39(1):11–17

    PubMed  CAS  Google Scholar 

  22. 22.

    Al-Saleh I, Shinwari N, Nester M, Mashhour A, Moncari L, El Din Mohamed G, Rabah A (2008) Longitudinal study of prenatal and postnatal lead exposure and early cognitive development in Al-Kharj, Saudi Arabia: a preliminary results of cord blood lead levels. J Trop Pediatr 54(5):300–307. doi:10.1093/tropej/fmn019

    PubMed  Article  Google Scholar 

  23. 23.

    Ataniyazova OA, Baumann RA, Liem AK, Mukhopadhyay UA, Vogelaar EF, Boersma ER (2001) Levels of certain metals, organochlorine pesticides and dioxins in cord blood, maternal blood, human milk and some commonly used nutrients in the surroundings of the Aral Sea (Karakalpakstan, Republic of Uzbekistan). Acta Paediatr 90(7):801–808

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Guan H, Piao FY, Li XW, Li QJ, Xu L, Yokoyama K (2010) Maternal and fetal exposure to four carcinogenic environmental metals. Biomed Environ Sci 23(6):458–465. doi:10.1016/S0895-3988(11)60008-1

    PubMed  Article  Google Scholar 

  25. 25.

    Raghunath R, Tripathi RM, Sastry VN, Krishnamoorthy TM (2000) Heavy metals in maternal and cord blood. Sci Total Environ 250(1–3):135–141

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Senanayake MP (2004) The air we breathe: is it safe for children? Sri Lanka J Child Health 33(3):64–72

    Google Scholar 

  27. 27.

    Vigeh M, Yokoyama K, Ramezanzadeh F, Dahaghin M, Sakai T, Morita Y, Kitamura F, Sato H, Kobayashi Y (2006) Lead and other trace metals in preeclampsia: a case–control study in Tehran, Iran. Environ Res 100(2):268–275. doi:10.1016/j.envres.2005.05.005

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Yapici G, Can G, Kiziler AR, Aydemir B, Timur IH, Kaypmaz A (2006) Lead and cadmium exposure in children living around a coal-mining area in Yatagan, Turkey. Toxicol Ind Health 22(8):357–362

    PubMed  CAS  Google Scholar 

  29. 29.

    Sharma RK, Agrawal M, Marshall FM (2008) Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India. Environ Monit Assess 142(1–3):269–278. doi:10.1007/s10661-007-9924-7

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Ujang Z, Buckley C (2002) Water and wastewater in developing countries: present reality and strategy for the future. Water Sci Technol 46(9):1–9

    PubMed  CAS  Google Scholar 

  31. 31.

    Olade MA (1987) Heavy metal pollution and the need for monitoring: illustrated for developing countries in West Africa. In: Hutchinson T, Meema K (eds) In lead, mercury, cadmium and arsenic in the environment. SCOPE. Wiley: New York. pp 335–341

  32. 32.

    SHRESTHA, #160, D. H (2003) Heavy metals pollution in the environment of Kathmandu. EDP sciences, Les Ulis, France

  33. 33.

    Pokhrel D, Bhandari BS, Viraraghavan T (2009) Arsenic contamination of groundwater in the Terai region of Nepal: an overview of health concerns and treatment options. Environ Int 35(1):157–161. doi:10.1016/j.envint.2008.06.003

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Maharjan M, Watanabe C, Ahmad SA, Ohtsuka R (2005) Arsenic contamination in drinking water and skin manifestations in lowland Nepal: the first community-based survey. Am J Trop Med Hyg 73(2):477–479

    PubMed  CAS  Google Scholar 

  35. 35.

    Alloway BJ (1990) Heavy metals in soils. Wiley, New York

    Google Scholar 

  36. 36.

    Andersen P (2007) A review of micronutrient problems in the cultivated soil of Nepal. Mt Res Dev 27(4):331–335. doi:10.1659/mrd.0915

    Article  Google Scholar 

  37. 37.

    Christian P, Jiang T, Khatry SK, LeClerq SC, Shrestha SR, West KP Jr (2006) Antenatal supplementation with micronutrients and biochemical indicators of status and subclinical infection in rural Nepal. Am J Clin Nutr 83(4):788–794

    PubMed  CAS  Google Scholar 

  38. 38.

    Awasthi S, Awasthi R, Pande VK, Srivastav RC, Frumkin H (1996) Blood lead in pregnant women in the urban slums of Lucknow, India. Occup Environ Med 53(12):836–840

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Liu J, McCauley L, Compher C, Yan C, Shen X, Needleman H, Pinto-Martin JA (2011) Regular breakfast and blood lead levels among preschool children. Environ Health 10(1):28. doi:10.1186/1476-069x-10-28

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Aydemir F, Cavdar AO, Soylemez F, Cengiz B (2003) Plasma zinc levels during pregnancy and its relationship to maternal and neonatal characteristics: a longitudinal study. Biol Trace Elem Res 91(3):193–202. doi:10.1385/bter:91:3:193

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Patel AB, Williams SV, Frumkin H, Kondawar VK, Glick H, Ganju AK (2001) Blood lead in children and its determinants in Nagpur, India. Int J Occup Environ Health 7(2):119–126

    PubMed  CAS  Google Scholar 

  42. 42.

    Baghurst PA, Tong S, Sawyer MG, Burns J, McMichael AJ (1999) Sociodemographic and behavioural determinants of blood lead concentrations in children aged 11-13 years. The Port Pirie Cohort Study. Med J Aust 170(2):63–67

    PubMed  CAS  Google Scholar 

  43. 43.

    Patel AB, Prabhu AS (2009) Determinants of lead level in umbilical cord blood. Indian Pediatr 46(9):791–793

    PubMed  CAS  Google Scholar 

  44. 44.

    Hwang YH, Ko Y, Chiang CD, Hsu SP, Lee YH, Yu CH, Chiou CH, Wang JD, Chuang HY (2004) Transition of cord blood lead level, 1985–2002, in the Taipei area and its determinants after the cease of leaded gasoline use. Environ Res 96(3):274–282. doi:10.1016/j.envres.2004.02.002

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Janjua NZ, Delzell E, Larson RR, Meleth S, Kabagambe EK, Kristensen S, Sathiakumar N (2008) Maternal nutritional status during pregnancy and surma use determine cord lead levels in Karachi, Pakistan. Environ Res 108(1):69–79. doi:10.1016/j.envres.2008.06.004

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Central Bureau of Statistics (2004) Nepal living standards survey. vol 2. Government of Nepal, Kathmandu

    Google Scholar 

  47. 47.

    Central Bureau of Statistics (2008) National population census, 2001. Caste ethnicity population of Nepal. Government of Nepal, Thapathali

    Google Scholar 

  48. 48.

    Lin YY, Leon Guo YL, Chen PC, Liu JH, Wu HC, Hwang YH (2011) Associations between petrol-station density and manganese and lead in the cord blood of newborns living in Taiwan. Environ Res 111(2):260–265. doi:10.1016/j.envres.2011.01.001

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Kile M, Wright R, Amarasiriwardena C, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani D (2009) Maternal and umbilical cord blood levels of arsenic, cadmium, manganese, and lead in rural Bangladesh. Epidemiology 20(6):S149–S150. doi:110.1097/1001.ede.0000362511.0000380361.bc

    Article  Google Scholar 

  50. 50.

    Tian LL, Zhao YC, Wang XC, Gu JL, Sun ZJ, Zhang YL, Wang JX (2009) Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol Trace Elem Res 132(1–3):51–59. doi:10.1007/s12011-009-8391-0

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Kirel B, Aksit MA, Bulut H (2005) Blood lead levels of maternal-cord pairs, children and adults who live in a central urban area in Turkey. Turk J Pediatr 47(2):125–131

    PubMed  Google Scholar 

  52. 52.

    Kolachi NF, Kazi TG, Afridi HI, Kazi N, Khan S, Kandhro GA, Shah AQ, Baig JA, Wadhwa SK, Shah F, Jamali MK, Arain MB (2011) Status of toxic metals in biological samples of diabetic mothers and their neonates. Biol Trace Elem Res 143(1):196–212. doi:10.1007/s12011-010-8879-7

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Lin CM, Doyle P, Wang D, Hwang YH, Chen PC (2010) Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med. doi:10.1136/oem.2010.059758

  54. 54.

    Elizabeth KE, Krishnan V, Vijayakumar T (2008) Umbilical cord blood nutrients in low birth weight babies in relation to birth weight & gestational age. Indian J Med Res 128(2):128–133

    PubMed  CAS  Google Scholar 

  55. 55.

    Su M, Tian D, Li W, Zhao H, Li L, Tan W, Song H (2002) Analysis of iodine and selenium trace elements in umbilical cord blood in cretinous regions in northwest China in 1999. Environ Health Prev Med 7(1):19–21. doi:10.1007/BF02898062

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Rahman A, Vahter M, Ekstrom EC, Rahman M, Golam Mustafa AH, Wahed MA, Yunus M, Persson LA (2007) Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 165(12):1389–1396. doi:10.1093/aje/kwm025

    PubMed  Article  Google Scholar 

  57. 57.

    Rahman A, Vahter M, Ekstrom EC, Persson LA (2011) Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119(5):719–724. doi:10.1289/ehp.1002265

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Ahmad SA, Maharjan M, Watanabe C, Ohtsuka R (2004) Arsenicosis in two villages in Terai, lowland Nepal. Environ Sci 11(3):179–188

    PubMed  CAS  Google Scholar 

  59. 59.

    Maharjan M, Shrestha RR, Ahmad SA, Watanabe C, Ohtsuka R (2006) Prevalence of arsenicosis in terai, Nepal. J Health Popul Nutr 24(2):246–252

    PubMed  Google Scholar 

  60. 60.

    Maharjan M, Watanabe C, Ahmad SA, Umezaki M, Ohtsuka R (2007) Mutual interaction between nutritional status and chronic arsenic toxicity due to groundwater contamination in an area of Terai, lowland Nepal. J Epidemiol Community Health 61(5):389–394. doi:10.1136/jech.2005.045062

    PubMed  Article  Google Scholar 

  61. 61.

    Shrestha RR, Shrestha MP, Upadhyay NP, Pradhan R, Khadka R, Maskey A, Maharjan M, Tuladhar S, Dahal BM, Shrestha K (2003) Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(1):185–200

    PubMed  Article  Google Scholar 

  62. 62.

    Shaikh ZA, Smith JC (1980) Metabolism of orally ingested cadmium in humans. Dev Toxicol Environ Sci 8:569–574

    PubMed  CAS  Google Scholar 

  63. 63.

    Mijal RS, Holzman CB (2010) Blood cadmium levels in women of childbearing age vary by race/ethnicity. Environ Res 110(5):505–512. doi:10.1016/j.envres.2010.02.007

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Galicia-Garcia V, Rojas-Lopez M, Rojas R, Olaiz G, Rios C (1997) Cadmium levels in maternal, cord and newborn blood in Mexico City. Toxicol Lett 91(1):57–61

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Sakamoto M, Murata K, Kubota M, Nakai K, Satoh H (2010) Mercury and heavy metal profiles of maternal and umbilical cord RBCs in Japanese population. Ecotoxicol Environ Saf 73(1):1–6. doi:10.1016/j.ecoenv.2009.09.010

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Afridi HI, Kazi TG, Kazi N, Baig JA, Jamali MK, Arain MB, Sarfraz RA, Sheikh HU, Kandhro GA, Shah AQ (2009) Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet 280(3):415–423. doi:10.1007/s00404-009-0955-x

    PubMed  Article  CAS  Google Scholar 

Download references


Special thanks are due to all participants, especially to those mothers who participated in the present study. I would like to express my gratitude to Dr. Keshav Raj Bhurtel, senior gynecologist and Associate Professor at Chitwan Medical College, Dr. Shanti Regmi, senior pediatrician at Bharatpur Hospital, and all technical staff of the hospital for their support during this study. This study was funded by Grant-in-Aid for Scientific Research by Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Japan Society for the Promotion of Science (JSPS; KAKENHI project number: 21406021, 20310146).

Author information



Corresponding author

Correspondence to Rajendra Prasad Parajuli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parajuli, R.P., Fujiwara, T., Umezaki, M. et al. Cord Blood Levels of Toxic and Essential Trace Elements and Their Determinants in the Terai Region of Nepal: A Birth Cohort Study. Biol Trace Elem Res 147, 75–83 (2012).

Download citation


  • Toxic elements
  • Trace elements
  • Terai
  • Nepal
  • Cord blood
  • Fetus exposure
  • Maternal source