Skip to main content
Log in

Preparation and Biological Effect of Nucleotide-Capped CdSe/ZnS Quantum Dots on Tetrahymena thermophila

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this paper, we described the preparation and characterization of different types of modified CdSe/ZnS quantum dots (QDs) and explored the biological effects of QDs with different surface modifications on the whole growth of unicellular protozoan Tetrahymena thermophila BF5 using a thermal activity monitor air isothermal microcalorimeter. Our results demonstrated that adenosine 5′-monophosphate (AMP) showed stronger interaction with QDs than other types of nucleotide. AMP-QDs could stimulate the growth of T. thermophila while mercaptoacetic acid-capped CdSe/ZnS quantum dots inhibited it. In addition, the population density determination and fluorescence imaging of T. thermophila BF5 also confirmed the results obtained from microcalorimetry. It is believed that this approach will provide a more convenient methodology for the kinetics and thermodynamics of microorganism when coexisting with QDs in real time, and all of which are very significant to understanding the effect of QDs to organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang S, Xiao Q, He ZK, Liu Y, Tinnefeld P, Su XR, Peng XN (2008) A high sensitive and specific QDs FRET bioprobe for MNase. Chem Commun 45:5990–5992

    Article  Google Scholar 

  2. Zhao D, Chan WH, He ZK, Qiu T (2009) Quantum dot–ruthenium complex dyads: recognition of double-strand DNA through dual-color fluorescence detection. Anal Chem 81:3537–3543

    Article  PubMed  CAS  Google Scholar 

  3. Xu YX, Liang JG, Hu CG, Wang F, Hu SS, He ZK (2007) A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dots. J Biol Inorg Chem 12:421–427

    Article  PubMed  CAS  Google Scholar 

  4. Yu GH, Liang JG, He ZK, Sun MX (2006) Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13:723–731

    Article  PubMed  CAS  Google Scholar 

  5. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  6. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  PubMed  CAS  Google Scholar 

  7. Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 7:121–123

    Article  Google Scholar 

  8. Wang JX, Zhang XZ, Chen YS, Sommerfelda M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128

    Article  PubMed  CAS  Google Scholar 

  9. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta 1784:1020–1027

    PubMed  CAS  Google Scholar 

  10. Xiao Q, Zhou B, Huang S, Tian FF, Guan HL, Ge YS, Liu XR, He ZK, Liu Y (2009) Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements. Nanotechnology 20:325101

    Article  PubMed  Google Scholar 

  11. Bhatta I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  Google Scholar 

  12. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  PubMed  CAS  Google Scholar 

  13. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  14. Liang JG, He ZK, Zhang SS, Huang S, Ai XP, Yang HX, Han HY (2007) Study on DNA damage induced by CdSe quantum dots using nucleic acid molecular “light switches” as probe. Talanta 71:1675–1678

    Article  PubMed  CAS  Google Scholar 

  15. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  16. Chen XJ, Feng WS, Miao W, Yu YH, Shen YF, Wan CY, Peng JH (2008) A microcalorimetric assay of Tetrahymena thermophila for assessing tributyltin acute toxicity. J Therm Anal Calorim 94:779–784

    Article  CAS  Google Scholar 

  17. Chen XJ, Miao W, Liu Y, Shen YF, Feng WS, Yu T, Yu YH (2006) Microcalorimetry as a possible tool for phylogenetic studies of Tetrahymena. J Therm Anal Calorim 84:429–433

    Article  CAS  Google Scholar 

  18. Dai J, Zhang YZ, Liu Y, Li QG (2008) Microcalorimetric study of the effect of CeIII on metabolic activity of mitochondria isolated from indice rice 9311. Chem Biodiversity 5:1321–1326

    Article  CAS  Google Scholar 

  19. Hinds S, Taft BJ, Levina L, Sukhovatkin V, Dooley CJ, Roy MD, MacNeil DD, Sargent EH, Kelley SO (2006) Nucleotide-directed growth of semiconductor nanocrystals. J Am Chem Soc 128:64–65

    Article  PubMed  CAS  Google Scholar 

  20. Guckian KM, Schweitzer BA, Ren RXF, Sheils CJ, Tahmassebi DC, Kool ET (2000) Factors contributing to aromatic stacking in water: evaluation in the context of DNA. J Am Chem Soc 122:2213–2222

    Article  PubMed  CAS  Google Scholar 

  21. Ikeda A, Hamano T, Hayashi K, Kikuchi J (2006) Water-solubilization of nucleotides-coated single-walled carbon nanotubes using a high-speed vibration milling technique. Org Lett 8:1153–1156

    Article  PubMed  CAS  Google Scholar 

  22. Ribeiro JA (1995) Purinergic inhibition of neurotransmitter release in the central nervous system. Pharmacol Toxicol 77:299–305

    Article  PubMed  CAS  Google Scholar 

  23. Green M, Smith-Boyle D, Harries J, Taylor R (2005) Nucleotide passivated cadmium sulfide quantum dots. Chem Commun 38:4830–4832

    Article  Google Scholar 

  24. Dooley CJ, Rouge J, Ma N, Invernale M, Kelley SO (2007) Nucleotide-stabilized cadmium sulfide nanoparticles. J Mater Chem 17:1687–1691

    Article  CAS  Google Scholar 

  25. Xie M, Liu HH, Chen P, Zhang ZL, Wang XH, Xie ZX, Du YM, Pan BQ, Pang DW (2005) CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging. Chem Commun 44:5518–5520

    Article  Google Scholar 

  26. Aldana J, Wang YA, Peng XG (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850

    Article  PubMed  CAS  Google Scholar 

  27. Wadsö I (2002) Isothermal microcalorimetry in applied biology. Thermochim Acta 394:305–311

    Article  Google Scholar 

  28. Yang LN, Xu F, Sun LX, Tan ZC, Tan HD, Zhao ZB, Liang JG (2006) Study on interaction between antibiotics and Escherichia coli DH5α by microcalorimetric method. J Therm Anal Cal 85:807–810

    Article  CAS  Google Scholar 

  29. Gill R, Willner I, Shweky I, Banin U (2005) Fluorescence resonance energy transfer in CdSe/ZnS–DNA conjugates: probing hybridization and DNA cleavage. J Phys Chem B 109:23715–23719

    Article  PubMed  CAS  Google Scholar 

  30. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  31. Frischknecht AL, Martin MG (2008) Simulation of the adsorption of nucleotide monophosphates on carbon nanotubes in aqueous solution. J Phys Chem C 112:6271–6278

    Article  CAS  Google Scholar 

  32. Slaveykova VI, Startchev K, Roberts J (2009) Amine- and carboxyl-quantum dots affect membrane integrity of bacterium Cupriavidus metallidurans CH34. Environ Sci Technol 43:5117–5122

    Article  PubMed  CAS  Google Scholar 

  33. Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XW (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–351

    Article  PubMed  CAS  Google Scholar 

  34. Twagilimana L, Bohatier J, Groliere C-A, Bonnemoy F, Sargos D (1998) A new low-cost microbiotest with the protozoan Spirostomum teres: culture conditions and assessment of sensitivity of the ciliate to 14 pure chemicals. Ecotoxicol Environ Saf 41:231–244

    Article  PubMed  CAS  Google Scholar 

  35. Zheng D, Liu Y, Zhang Y, Chen XJ, Shen YF (2006) Microcalorimetric investigation of the toxic action of Cr(VI) on the metabolism of Tetrahymena thermophila BF5 during growth. Environ Toxicol Pharmacol 22:121–127

    Article  PubMed  Google Scholar 

  36. Parak WJ, Pellegrino T, Plank C (2005) Labeling of cells with quantum dot. Nanotechnology 16:R9–R25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese 973 Program (2011CB933600), Chinese 863 Program (2007AA06Z407), and National Natural Science Foundation of China (90717111, 20873096, 20921062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu or Zhike He.

Additional information

Q. Xiao and T. Qiu contributed equally to this work.

Electronic Supplemental Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Qiu, T., Huang, S. et al. Preparation and Biological Effect of Nucleotide-Capped CdSe/ZnS Quantum Dots on Tetrahymena thermophila . Biol Trace Elem Res 147, 346–353 (2012). https://doi.org/10.1007/s12011-011-9286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9286-4

Keywords

Navigation