Skip to main content

Advertisement

Log in

Effect of Grape Seed Proanthocyanidin Extracts on Methylmercury-Induced Neurotoxicity in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

As a highly toxic environmental pollutant, methylmercury (MeHg) can cause neurotoxicity in animals and humans. Considering the antioxidant property of grape seed proanthocyanidin extracts (GSPE), this study was aimed to evaluate the effect of GSPE on MeHg-induced neurotoxicity in rats. Rats were exposed to MeHg by intraperitoneal injection (4, 12 μmol/kg, respectively) and GSPE was administered by gavage (250 mg/kg) 2 h later. After a 4-week treatment, phosphate-activated glutaminase, glutamine synthetase, glutathione peroxidase and superoxide dismutase activities, glutamate, glutamine, malondialdehyde and glutathione contents in cerebral cortex were measured. Reactive oxygen species (ROS) and apoptosis were also estimated in cells. The results showed that the MeHg-induced neurotoxicity was significantly attenuated. GSPE significantly decreased the production of ROS, counteracted oxidative damage and increased the antioxidants and antioxidant enzymes activities in rats prior to MeHg exposure. Moreover, the effects on the rate of apoptotic cells and the disturbance of glutamate homeostasis were correspondingly modulated. These observations highlighted the potential of GSPE in offering protection against MeHg-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  PubMed  CAS  Google Scholar 

  2. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  PubMed  CAS  Google Scholar 

  3. Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–291

    Article  PubMed  CAS  Google Scholar 

  4. Allen JW, Mutkus LA, Aschner M (2001) Methylmercury-mediated inhibition of 3H-d-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res 902:92–100

    Article  PubMed  CAS  Google Scholar 

  5. Allen JW, Shanker G, Tan KH, Aschner M (2002) The consequences of methylmercury exposure on interactive functions between astrocytes and neurons. Neurotoxicology 23:755–759

    Article  PubMed  CAS  Google Scholar 

  6. Shanker G, Aschner M (2003) Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Mol Brain Res 110:85–91

    Article  PubMed  CAS  Google Scholar 

  7. Farina M, Campos F, Vendrell I, Berenguer J, Barzi M, Pons S (2009) Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 112:416–426

    Article  PubMed  CAS  Google Scholar 

  8. Bush AI (2000) Metals neuroscience. Curr Opin Chem Biol 4:184–191

    Article  PubMed  CAS  Google Scholar 

  9. Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 20:1919–1926

    Article  PubMed  CAS  Google Scholar 

  10. Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy AC, Marques MR, Dafre AL, Farina M (2009) Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 47:449–457

    Article  PubMed  CAS  Google Scholar 

  11. Shanker G, Syversen T, Aschner JL, Aschner M (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain Res Mol Brain Res 137:11–22

    Article  PubMed  CAS  Google Scholar 

  12. Kaur P, Aschner M, Syversen T (2006) Glutathione modulation influences methylmercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology 27:492–500

    Article  PubMed  CAS  Google Scholar 

  13. Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations inpermeability and glutamine transport in cultured astrocytes. Brain Res 1131:1–10

    Article  PubMed  CAS  Google Scholar 

  14. Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JB, Aschner M, Farina M (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227:147–154

    Article  PubMed  CAS  Google Scholar 

  15. Aschner M, Yao CP, Allen JW, Tan KH (2000) Methylmercury alters glutamate transport in astrocyte. Neurochem Int 37:199–206

    Article  PubMed  CAS  Google Scholar 

  16. Fonfria E, Vilaro MT, Babot Z, Rodriguez-Farre E, Sunol C (2005) Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells. J Neurosci Res 79:545–553

    Article  PubMed  CAS  Google Scholar 

  17. Juárez BI, Martínez ML, Montante M, Dufour L, García E, Jiménez-Capdeville ME (2002) Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats. Neurotoxicol Teratol 5516:1–5

    Google Scholar 

  18. Allen JW, Mutkus LA, Aschner M (2001) Mercuric chloride, but not methylmercury, inhibits glutamine synthetase activity in primary cultures of cortical astrocytes. Brain Res 891(1–2):148–157

    Article  PubMed  CAS  Google Scholar 

  19. Suárez I, Bodega G, Fernández B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41(2–3):123–142

    Article  PubMed  Google Scholar 

  20. Matés JM, Pérez-Gómez C, Núñez de Castro I, Asenjo M, Márquez J (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34:439–458

    Article  PubMed  Google Scholar 

  21. Houde V, Grenier D, Chandad F (2006) Protective effects of grape seed proanthocyanidins against oxidative stress induced by lipopolysaccharides of periodontopathogens. J Periodontol 77:1371–1379

    Article  PubMed  CAS  Google Scholar 

  22. Shao ZH, Becker LB, Vanden Hoek TL, Schumacker PT, Li CQ, Zhao D, Wojcik K, Anderson T, Qin Y, Dey L, Yuan CS (2003) Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytes. Pharmacol Res 47:463–469

    Article  PubMed  CAS  Google Scholar 

  23. Vayalil PK, Mittal A, Katiyar SK (2004) Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis 25:987–995

    Article  PubMed  CAS  Google Scholar 

  24. Bagchi D, Bagchi M, Stohs S, Ray SD, Sen CK, Preuss HG, Ann NY (2002) Cellular protection with proanthocyanidins derived from grape seeds. Acad Sci 957:260–270

    Article  CAS  Google Scholar 

  25. Bagchi D, Garg A, Krohn RL, Bagchi M, Bagchi DJ, Balmoori J, Stohs SJ (1998) Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol 30:771–776

    Article  PubMed  CAS  Google Scholar 

  26. Ray S, Bagchi D, Lim PM, Bagchi M, Gross SM, Kothari SC, Preuss HG, Stohs SJ (2001) Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol 109:165–197

    PubMed  CAS  Google Scholar 

  27. Farina M, Aschner M, Rocha JB (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol. May 9. [Epub ahead of print].

  28. Bagchi D, Sen CK, Ray SD, Das DK, Bagchi M, Preuss HG, Vinson JA (2003) Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523–524:87–97

    PubMed  Google Scholar 

  29. Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ (1997) Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95(2):179–189

    PubMed  CAS  Google Scholar 

  30. Adair BM, Cobb GP (1999) Improved preparation of small biological samples for mercury analysis using cold vapor atomic absorption spectroscopy. Chemosphere 38:2951–2958

    Article  PubMed  CAS  Google Scholar 

  31. Ohkawa W, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  32. Kum-Talt L, Tan IK (1974) A new colorimetric method for the determination of glutathione in erythrocytes. Clin Chem Acta 53:153–161

    Article  Google Scholar 

  33. Renis M, Cardile V, Russo A, Campisi A, Collovà F (1998) Glutamine synthetase activity and HSP70 levels in cultured rat astrocytes: effect of 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. Brain Res 783:143–150

    Article  PubMed  CAS  Google Scholar 

  34. Curi TC, De Melo MP, De Azevedo RB, Zorn TM, Curi R (1997) Glutamine utilization by rat neutrophils: presence of phosphate-dependent glutaminase. Am J Physiol 273:C1124–C1129

    PubMed  CAS  Google Scholar 

  35. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress bydichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  36. Shanker G, Aschner JL, Syversen T, Aschner M (2004) Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res 128:48–57

    Article  PubMed  CAS  Google Scholar 

  37. Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M (2006) Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111:199–215

    Article  PubMed  CAS  Google Scholar 

  38. Lora J, Alonso FJ, Segura JA, Lobo C, Márquez J, Matés JM (2004) Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem 271:4298–4306

    Article  PubMed  CAS  Google Scholar 

  39. Ogunlesi F, Cho C, McGrath-Morrow SA (2004) The effect of glutamine on A549 cells exposed to moderate hyperoxia. Biochim Biophys Acta 1688:112–120

    PubMed  CAS  Google Scholar 

  40. Ceccatelli S, Daré E, Moors M (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188:301–308

    Article  PubMed  CAS  Google Scholar 

  41. Duchen MR (2000) Mitochondria and Ca(2+) in cell physiology and pathophysiology. Cell Calcium 28:339–348

    Article  PubMed  CAS  Google Scholar 

  42. Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894:131–140

    Article  PubMed  CAS  Google Scholar 

  43. Myhrstad MC, Carlsen H, Nordström O, Blomhoff R, Moskaug JØ (2002) Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamyl cysteine synthetase catalytical. subunit promoter. Free Radic Biol Med 32(5):386–393

    Article  PubMed  CAS  Google Scholar 

  44. Fujimura M, Usuki F, Sawada M, Takashima A (2009) Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology 30:1000–1007

    Article  PubMed  CAS  Google Scholar 

  45. Joshi SS, Kuszynski CA, Benner EJ, Bagchi M, Bagchi D (1999) Amelioration of the cytotoxic effects of chemotherapeutic agents by grape seed proanthocyanidin extract. Antiox Redox Signal 1:563–570

    Article  CAS  Google Scholar 

  46. Jia Z, Song Z, Zhao Y, Wang X, Liu P (2011) Grape seed proanthocyanidin extract protects human lens epithelial cells from oxidative stress via reducing NF-кB and MAPK protein expression. Mol Vis 17:210–217

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the grants from the National Natural Science Foundation of China (No. 81172631). The authors thank Chunwei Lu from the Department of Public Health in China Medical University for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofa Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Xu, Z., Liu, W. et al. Effect of Grape Seed Proanthocyanidin Extracts on Methylmercury-Induced Neurotoxicity in Rats. Biol Trace Elem Res 147, 156–164 (2012). https://doi.org/10.1007/s12011-011-9272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9272-x

Keywords

Navigation