Skip to main content
Log in

Iron, Copper, and Zinc Transport: Inhibition of Divalent Metal Transporter 1 (DMT1) and Human Copper Transporter 1 (hCTR1) by shRNA

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron (Fe), copper (Cu), and zinc (Zn) fulfill various essential biological functions and are vital for all living organisms. They play important roles in oxygen transport, cell growth and differentiation, neurotransmitter synthesis, myelination, and synaptic transmission. Because of their role in many critical functions, they are commonly used in food fortification and supplementation strategies globally. To determine the involvement of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) on Fe, Cu, and Zn uptake, Caco-2 cells were transfected with four different shRNA plasmids to selectively inhibit DMT1 or hCTR1 transporter expression. Fe and Cu uptake and total Zn content measurements were performed in shRNA-DMT1 and shRNA-hCTR1 cells. Both shRNA-DMT1 and shRNA-hCTR1 cells had lower apical Fe uptake (a decrease of 51% and 41%, respectively), Cu uptake (a decrease of 25.8% and 38.5%, respectively), and Zn content (a decrease of 23.1% and 22.7%, respectively) compared to control cells. These results confirm that DMT1 is involved in active transport of Fe, Cu, and Zn although Zn showed a different relative capacity. These results also show that hCTR1 is able to transport Fe and Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Crichton R, Boelaert JR, Braun V et al (2001) The importance of iron for biological systems. In: Crichton R (ed) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences, 2nd edn. Wiley, Chichester

    Google Scholar 

  2. McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc of zinc metalloenazymes. J Nutr 130:1437S–1446S

    PubMed  CAS  Google Scholar 

  3. Institute of Medicine, Food and Nutrition Board (2002) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, pp 224–257

    Google Scholar 

  4. Ruz M (2003) Zinc properties and determination. In: Caballero B, Trugo L, Finglas P (eds) Encyclopedia of food sciences and nutrition. Academic, London, pp 6267–6272

    Chapter  Google Scholar 

  5. López de Romaña D, Olivares M, Uauy R, Araya M (2011) Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 25:3–13

    Article  Google Scholar 

  6. Gunshin H, Mackenzie B, Berger U et al (1997) Cloning and characterization of a mammalian proton-coupled metal-iron transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  7. Arredondo M, Muñoz P, Mura C et al (2003) DMT1, a physiologically relevant apical Cu+1 transporter of intestinal cells. Am J Physiol 284:C1525–C1530

    CAS  Google Scholar 

  8. Zhou B, Gitschier A (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci 94:7481–7486

    Article  PubMed  CAS  Google Scholar 

  9. Foster M, Samman S (2010) Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 13:1549–1573

    Article  PubMed  CAS  Google Scholar 

  10. Ramakrishnan U (2002) Prevalence of micronutrient malnutrition worldwide. Nutr Rev 60(5):S46–S52

    Article  PubMed  Google Scholar 

  11. Olivares M, Walter T, Hertrampf E (1999) Anaemia and iron deficiency disease in children. Brit Med Bull 55:534–548

    Article  PubMed  CAS  Google Scholar 

  12. Ruz M, Cavan KR, Bettger WJ et al (1991) Development of a dietary model for the study of mild zinc deficiency in humans and evaluation of some biochemical and functional indices of zinc status. Am J Clin Nutr 53:1295–1203

    Google Scholar 

  13. Ruz M, Cavan KR, Bettger WJ et al (1992) Erythrocytes, erythrocyte membranes, neuthrophils, an platelets as biopsy materials for the assessment of zinc status in humans. Br J Nutr 68:515–527

    Article  PubMed  CAS  Google Scholar 

  14. International Zinc Nutrition Consultative Group (IZiNCG), Brown KH, Rivera JA et al (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S99–S203

    PubMed  Google Scholar 

  15. Benoist B, Darnton-Hil I, Davidsson L, Fontaine O, Hotz C (2007) Conclusions of the Joint WHO/UNICEF/IAEA/IZiNCG Interagency Meeting on Zinc Status Indicators. Food Nutr Bull 28:S480–S484

    PubMed  Google Scholar 

  16. INACG (1977) Guidelines for the eradication of iron deficiency anemia, a report of the International Nutritional Anemia Consultative Group. INACG, Washington, pp 1–29

    Google Scholar 

  17. Olivares M, Pizarro F, Ruz M (2007) Zinc inhibits nonheme iron bioavailability in humans. Biol Trace Elem Res 117:7–14

    Article  PubMed  CAS  Google Scholar 

  18. Yamaji S, Tennant J, Tandy S et al (2001) Zinc regulates the function and expression of the iron transporters DMT1and IREG1 in human intestinal Caco-2 cells. FEBS Lett 507:137–141

    Article  PubMed  CAS  Google Scholar 

  19. Arredondo M, Martínez R, Núñez MT, Ruz M, Olivares M (2006) Inhibition of iron and copper uptake by iron, copper and zinc. Biol Res 39:95–102

    Article  PubMed  CAS  Google Scholar 

  20. Olivares M, Pizarro F, López de Romaña D et al (2010) Acute copper supplementation does not inhibit non-heme iron bioavalability in humans. Biol Trace Elem Res 136:180–186

    Article  PubMed  CAS  Google Scholar 

  21. Tallkvist J, Bowlus CL, Lönnerdal B (2000) Functional and molecular responses of human intestinal Caco-2 cells to iron treatment. Am J Clin Nutr 72:770–775

    PubMed  CAS  Google Scholar 

  22. Tandy S, Williams M, Leggett A et al (2000) Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J Biol Chem 275:1023–1029

    Article  PubMed  CAS  Google Scholar 

  23. Kordas K, Stoltzfus RJ (2004) New evidence of iron and zinc interplay at the enterocyte and neural tissues. J Nutr 134:1295–1298

    PubMed  CAS  Google Scholar 

  24. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    Article  PubMed  CAS  Google Scholar 

  25. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  27. Zimnicka A, Maryon E, Kaplan J (2007) Human copper transportes hCTR1 mediates basolateral uptake of copper into enterocytes. Implications for copper homeostasis. J Biol Chem 282:26471–26480

    Article  PubMed  CAS  Google Scholar 

  28. Iyengar V, Pullakhandam R, Nair KM (2009) Iron-zinc interaction during uptake in human intestinal Caco-2 cell line: kinetic analyses and possible mechanism. Indian J Biochem Biophys 46(4):299–306

    PubMed  CAS  Google Scholar 

  29. Liuzzi JP, Cousins R (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    Article  PubMed  CAS  Google Scholar 

  30. Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2þ with genetically encoded sensors. PNAS 108:7351–7356

    Article  PubMed  CAS  Google Scholar 

  31. Garrick MD, Singleton ST, Vargas F et al (2006) DMT1: which metals does it transport? Biol Res 39:79–85

    Article  PubMed  CAS  Google Scholar 

  32. Liuzzi JP, Aydemir F, Nam H, Knutson M, Cousins R (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A 103(37):13612–13617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant 1070665 from Fondo Nacional de Ciencia y Tecnología (FONDECYT), Chile to M. Olivares. We thank Katharine Jones for her assistance in reviewing the English in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Arredondo.

Additional information

This work was supported by Fondo Nacional de Ciencia y Tecnología grant #1070665.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza, A., Le Blanc, S., Olivares, M. et al. Iron, Copper, and Zinc Transport: Inhibition of Divalent Metal Transporter 1 (DMT1) and Human Copper Transporter 1 (hCTR1) by shRNA. Biol Trace Elem Res 146, 281–286 (2012). https://doi.org/10.1007/s12011-011-9243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9243-2

Keywords

Navigation