Skip to main content

Advertisement

Log in

Relationships Between Respiratory Function Disorders and Serum Copper Levels in Copper Mineworkers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the respiratory function disorders that could be related to dust exposure during the production of copper mine in copper mineworkers (CMWs). The study included 75 male CMWs (mean age, 32.0 ± 7.1 years, 58.6% smokers) and 75 male age- and smoking status-matched healthy control subjects. Serum Cu level was significantly higher in the CMW group (0.80 ± 0.62 μg/ml) than the control group (0.60 ± 0.39 μg/ml) (p = 0.017). Significant negative correlations were found between serum Cu level and forced expiratory volume in first second (r = −0.600; p < 0.001) and between serum Cu level and forced vital capacity (r = −0.593; p = <0.001) in CMWs. Serum Cu level was significantly higher in the restrictive type pulmonary function disorders group (1.36 ± 0.62 μg/ml) than obstructive type (0.90 ± 0.55 μg/ml) and normal pulmonary function pattern group (0.53 ± 0.43 μg/ml) (p < 0.001). Patients with radiological parenchymal abnormalities had significantly higher serum copper levels than those without abnormalities (1.53 ± 0.52 vs. 0.71 ± 0.52 μg/ml, respectively; p = 0.002). In conclusion, result of the study has shown a negative association between pulmonary functions disorders and radiological abnormalities and serum Cu levels in CMWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CMWs:

Copper mineworkers

COPD:

Chronic obstructive pulmonary disease

Cu:

Copper

FEV1:

Forced expiratory volume in first second

FVC:

Forced vital capacity

HRCT:

High-resolution computed tomography

IF:

Interstitial fibrosis

ILO:

International Labour Office

PM10 :

Respirable dust (particle diameter <10 μm)

PN:

Parenchymal nodules

Zn:

Zinc

References

  1. Ostiguy G, Vaillancourt C, Bégin R (1995) Respiratory health of workers exposed to metal dusts and foundry fumes in a copper refinery. Occup Environ Med 52:204–210

    Article  PubMed  CAS  Google Scholar 

  2. Hunter D (1990) Biochemical indicators of dietary intake. Oxford University Press, New York, p 143

    Google Scholar 

  3. Taylor J, Oey L (1982) Ceruloplasmin: plasma inhibitor of the oxidative inactivation of alpha1-protease inhibitor. Am Rev Respir Dis 126:476–482

    PubMed  CAS  Google Scholar 

  4. Forsberg L, de Faire U, Morgenstern R (2001) Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys 389:84–93

    Article  PubMed  CAS  Google Scholar 

  5. Denko C (1979) Protective role of ceruloplasmin in inflammation. Agents Actions 9:333–334

    Article  PubMed  CAS  Google Scholar 

  6. O’Dell B, Kilburn K, McKensie W (1978) The lung of the copper-deficient rat. Am J Pathol 91:413–432

    PubMed  Google Scholar 

  7. Maritz G, Windvogel S (2003) Is maternal copper supplementation during alveolarisation protecting the developing rat lung against the adverse effects of maternal nitotine exposure? A morphometric study. Exp Lung Res 29:243–260

    Article  PubMed  CAS  Google Scholar 

  8. Zowczak M, Iskra M, Torliński L et al (2001) Analysis of serum copper and zinc concentrations in cancer patients. Biol Trace Elem Res 82:1–8

    Article  PubMed  CAS  Google Scholar 

  9. Isik B, Isik RS, Ceylan A et al (2005) Trace elements and oxidative stress in chronic obstructive pulmonary disease. Saudi Med J 26:1882–1885

    PubMed  Google Scholar 

  10. Chang KL, Hung TC, Hsieh BS et al (2006) Zinc at pharmacologic concentrations affects cytokine expression and induces apoptosis of human peripheral blood mononuclear cells. Nutrition 22:465–474

    Article  PubMed  CAS  Google Scholar 

  11. Dagli CE, Tanrikulu AC, Koksal N et al (2010) Interstitial lung disease in coppersmiths in high serum copper levels. Biol Trace Elem Res 137:63–68

    Article  PubMed  CAS  Google Scholar 

  12. Tanrikulu AC, Abakay A, Evliyaoglu O et al (2010) Coenzyme Q10, copper, zinc, and lipid peroxidation levels in serum of patients with chronic obstructive pulmonary disease. Biol Trace Elem Res. doi:10.1007/s12011-010-8897-5

  13. Guidelines for the use of the ILO international classification of radiographs of pneumoconioses, revised edition 2000. Available at http://www.ilo.org/public/libdoc/ilo/2002/102B09_423_engl.pdf. Accessed on 15 Jun 2011

  14. American Thoracic Society (1987) Standardization of spirometry—1987 update. Statement of the American Thoracic Society. Am Rev Respir Dis 136:1285–1298

    Article  Google Scholar 

  15. Spirometry for health care providers. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Available at http://www.goldcopd.org/uploads/users/files/GOLD_Spirometry_2010.pdf. Accessed on 15 Jun 2011

  16. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50

    Article  PubMed  CAS  Google Scholar 

  17. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  18. Rice T, Clarke R, Godleski J et al (2001) Differential ability of transition metals to induce pulmonary inflammation. Toxicol Appl Pharmacol 177:46–53

    Article  PubMed  CAS  Google Scholar 

  19. Kennedy T, Ghio A, Reed W et al (1998) Copper-dependent inflammation and nuclear factor-kB activation by particulate air pollution. Am J Respir Cell Mol Biol 19:366–378

    PubMed  CAS  Google Scholar 

  20. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 2:1990–2001

    Google Scholar 

  21. Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  Google Scholar 

  22. Manrique HA, Gómez FP, Muñoz PA et al (2008) Adenosine 5′-monophosphate in asthma: gas exchange and sputum cellular responses. Eur Respir J 31:1205–1212

    Article  PubMed  CAS  Google Scholar 

  23. Sirmali M, Uz E, Sirmali R et al (2007) Protective effects of erdosteine and vitamins C and E combination on ischemia–reperfusion-induced lung oxidative stress and plasma copper and zinc levels in a rat hind limb model. Biol Trace Elem Res 118:43–52

    Article  PubMed  CAS  Google Scholar 

  24. Barnes PJ (2000) Chronic obstructive pulmonary disease. N Engl J Med 343:269–280

    Article  PubMed  CAS  Google Scholar 

  25. Boosalis M, Snowdon D, Tully C et al (1996) Acute phase response and plasma carotenoid concentrations in older women: findings from the Nun study. Nutrition 12:475–478

    Article  PubMed  CAS  Google Scholar 

  26. Karadag F, Cildag O, Altınısık M et al (2004) Trace elements as a component of oxidative stress in COPD. Respirology 9:33–37

    Article  PubMed  Google Scholar 

  27. Vural H, Uzun K, Uz E et al (2000) Concentrations of copper, zinc, and various elements in serum of patients with bronchial asthma. J Trace Elem Med Biol 14:88–91

    Article  PubMed  CAS  Google Scholar 

  28. Kadrabova J, Madaric A, Podivinsky F et al (1996) Plasma zinc, copper and copper/zinc ration in intrinsic asthma. J Trace Elem Med Biol 10:50–53

    Article  PubMed  CAS  Google Scholar 

  29. Gray RD, Duncan A, Noble D et al (2010) Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest 137(3):635–641

    Article  PubMed  CAS  Google Scholar 

  30. Onal S, Nazıroğlu M, Colak M et al (2010) Effects of different medical treatments on serum copper, selenium and zinc levels in patients with rheumatoid arthritis. Biol Trace Elem Res 142:447–455. doi:10.1007/s12011-010-8826-7

    Article  PubMed  Google Scholar 

  31. Pearson P, Britton J, McKeever T et al (2005) Lung function and blood levels of copper, selenium, vitamin C and vitamin E in the general population. Eur J Clin Nutr 59:1043–1048

    Article  PubMed  CAS  Google Scholar 

  32. Bargagli E, Monaci F, Bianchi N et al (2008) Analysis of trace elements in bronchoalveolar lavage of patients with diffuse lung diseases. Biol Trace Elem Res 124:225–235

    Article  PubMed  CAS  Google Scholar 

  33. Dikensoy O, Kervancioglu R, Ege I et al (2008) High prevalence of diffuse parenchymal lung diseases among Turkish tinners. J Occup Health 50:208–211

    Article  PubMed  Google Scholar 

  34. Lebedová J, Dlouhá B, Rychlá L et al (2003) Lung function impairment in relation to asbestos-induced pleural lesions with reference to the extent of the lesions and the initial parenchymal fibrosis. Scand J Work Environ Health 29:388–395

    Article  PubMed  Google Scholar 

  35. Falaschi F, Boraschi P, Neri S et al (1995) High-resolution computed tomography (HRCT) in the detection of early asbestosis. Eur Radiol 5:291–296

    Article  Google Scholar 

  36. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. Available at http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf. Accessed on 15 Jun 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdurrahman Abakay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abakay, A., Gokalp, O., Abakay, O. et al. Relationships Between Respiratory Function Disorders and Serum Copper Levels in Copper Mineworkers. Biol Trace Elem Res 145, 151–157 (2012). https://doi.org/10.1007/s12011-011-9184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9184-9

Keywords

Navigation