Biological Trace Element Research

, Volume 145, Issue 2, pp 257–267 | Cite as

Stimulation of Fibroblast Proliferation by Insoluble Gadolinium Salts

  • Katherine Bleavins
  • Patricia Perone
  • Madhav Naik
  • Muneeb Rehman
  • Muhammad N. Aslam
  • Michael K. Dame
  • Sasha Meshinchi
  • Narasimharao Bhagavathula
  • James VaraniEmail author


The purpose of this study was to assess insoluble salts containing gadolinium (Gd3+) for effects on human dermal fibroblasts. Responses to insoluble Gd3+ salts were compared to responses seen with Gd3+ solubilized with organic chelators, as in the Gd3+-based contrast agents (GBCAs) used for magnetic resonance imaging. Insoluble particles of either Gd3+ phosphate or Gd3+ carbonate rapidly attached to the fibroblast cell surface and stimulated proliferation. Growth was observed at Gd3+ concentrations between 12.5 and 125 μM, with toxicity at higher concentrations. Such a narrow window did not characterize GBCA stimulation. Proliferation induced by insoluble Gd3+ salts was inhibited in the presence of antagonists of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways (similar to chelated Gd3+) but was not blocked by an antibody to the platelet-derived growth factor receptor (different from chelated Gd3+). Finally, high concentrations of the insoluble Gd3+ salts failed to prevent fibroblast lysis under low-Ca2+ conditions, while similar concentrations of chelated Gd3+ were effective. In conclusion, while insoluble Gd3+ salts are capable of stimulating fibroblast proliferation, one should be cautious in assuming that GBCA dechelation must occur in vivo to produce the profibrotic changes seen in association with GBCA exposure in the subset of renal failure patients that develop nephrogenic systemic fibrosis.


Gadolinium phosphate Gadolinium carbonate Gadolinium-based contrast agent Dermal fibroblast Intracellular signaling Proliferation 



This study was supported in part by grant CA140760 from the National Institutes of Health, Bethesda, MD, USA and by grant 11–0577 from the Agency for International Cancer Research.


  1. 1.
    Evans CH (ed) (1990) Biochemistry of the lanthanides. In: Biochemistry of the Elements. Plenum Press, New YorkGoogle Scholar
  2. 2.
    Gschneidner Jr KA, Eyring L (eds) (2000) Handbook on the Physics and Chemistry of Rare Earths (ed), Amsterdam, The Netherlands: Elsevier Science & Technology BooksGoogle Scholar
  3. 3.
    Joffe P, Thomsen HS, Meusel M (1998) Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol 5(7):491–502PubMedCrossRefGoogle Scholar
  4. 4.
    Lin SP, Brown JJ (2007) MR contrast agents: physical and pharmacologic basics. J Magn Reson Imaging 25(5):884–899PubMedCrossRefGoogle Scholar
  5. 5.
    Morcos SK (2008) Extracellular gadolinium contrast agents: differences in stability. Eur J Radiol 66(2):175–179PubMedCrossRefGoogle Scholar
  6. 6.
    Cowper SE, Robin HS, Steinberg SM et al (2000) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356(9234):1000–1001PubMedCrossRefGoogle Scholar
  7. 7.
    Swartz RD, Crofford LJ, Phan SH et al (2003) Nephrogenic fibrosing dermopathy: a novel cutaneous fibrosing disorder in patients with renal failure. Am J Med 114(7):563–572PubMedCrossRefGoogle Scholar
  8. 8.
    Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108PubMedCrossRefGoogle Scholar
  9. 9.
    Marckmann P, Skov L, Rossen K et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362PubMedCrossRefGoogle Scholar
  10. 10.
    Mendoza FA, Artlett CM, Sandorfi N et al (2006) Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 35(4):238–249PubMedCrossRefGoogle Scholar
  11. 11.
    Yerram P, Saab G, Karuparthi PR et al (2007) Nephrogenic systemic fibrosis: a mysterious disease in patients with renal failure—role of gadolinium-based contrast media in causation and the beneficial effect of intravenous sodium thiosulfate. Clin J Am Soc Nephrol 2(2):258–263PubMedCrossRefGoogle Scholar
  12. 12.
    Khurana A, Runge VM, Narayanan M et al (2007) Nephrogenic systemic fibrosis: a review of 6 cases temporally related to gadodiamide injection (omniscan). Invest Radiol 42(2):139–145PubMedCrossRefGoogle Scholar
  13. 13.
    Collidge TA, Thomson PC, Mark PB et al (2007) Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology 245(1):168–175PubMedCrossRefGoogle Scholar
  14. 14.
    Rydahl C, Thomsen HS, Marckmann P (2008) High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest Radiol 43(2):141–144PubMedCrossRefGoogle Scholar
  15. 15.
    Shabana WM, Cohan RH, Ellis JH et al (2008) Nephrogenic systemic fibrosis: a report of 29 cases. AJR Am J Roentgenol 190(3):736–741PubMedCrossRefGoogle Scholar
  16. 16.
    Wertman R, Altun E, Martin DR et al (2008) Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology 248(3):799–806PubMedCrossRefGoogle Scholar
  17. 17.
    Broome DR (2008) Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 66(2):230–234PubMedCrossRefGoogle Scholar
  18. 18.
    McNeill AM, Barr RJ (2002) Scleromyxedema-like fibromucinosis in a patient undergoing hemodialysis. Int J Dermatol 41(6):364–367PubMedCrossRefGoogle Scholar
  19. 19.
    Neudecker BA, Stern R, Mark LA et al (2005) Scleromyxedema-like lesions of patients in renal failure contain hyaluronan: a possible pathophysiological mechanism. J Cutan Pathol 32(9):612–615PubMedCrossRefGoogle Scholar
  20. 20.
    Edward M, Quinn JA, Mukherjee S et al (2008) Gadodiamide contrast agent ‘activates’ fibroblasts: a possible cause of nephrogenic systemic fibrosis. J Pathol 214(5):584–593PubMedCrossRefGoogle Scholar
  21. 21.
    Varani J, DaSilva M, Warner RL et al (2009) Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest Radiol 44(2):74–81PubMedCrossRefGoogle Scholar
  22. 22.
    Edward M, Quinn JA, Burden AD et al (2010) Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology 256(3):735–743PubMedCrossRefGoogle Scholar
  23. 23.
    Wiesinger B, Kehlbach R, Bebin J et al (2010) Effects of MRI contrast agents on human embryonic lung fibroblasts. Invest Radiol 45(9):513–519PubMedCrossRefGoogle Scholar
  24. 24.
    Bhagavathula N, DaSilva M, Aslam MN et al (2009) Regulation of collagen turnover in human skin fibroblasts exposed to a gadolinium-based contrast agent. Invest Radiol 44(8):433–439PubMedCrossRefGoogle Scholar
  25. 25.
    Perone P, Weber S, DaSilva M et al (2010) Collagenase activity is suppressed by elevated tissue inhibitor of metalloproteinase-1 (TIMP-1) in human skin exposed to a gadolinium-based MRI contrast agent. Invest Radiol 45:42–48PubMedCrossRefGoogle Scholar
  26. 26.
    High WA, Ayers RA, Chandler J et al (2007) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56:21–26PubMedCrossRefGoogle Scholar
  27. 27.
    High WA, Ayers RA, Cowper SE (2007) Gadolinium is quantifiable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56:710–712PubMedCrossRefGoogle Scholar
  28. 28.
    Boyd AS, Sanyal S, Abraham JL (2010) Tissue gadolinium deposition and fibrosis mimicking nephrogenic systemic fibrosis—subclinical NSF? J Am Acad Dermatol 62:337–342PubMedCrossRefGoogle Scholar
  29. 29.
    Abraham JL, Thakral C, Skov L et al (2008) Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br J Dermatol 158:273–280PubMedCrossRefGoogle Scholar
  30. 30.
    George SJ, Webb SM, Abraham JL, Cramer SP (2010) Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. Br J Dermatol 163:1077–1081PubMedCrossRefGoogle Scholar
  31. 31.
    Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104(Suppl 1):85–95PubMedCrossRefGoogle Scholar
  32. 32.
    Heckert EG, Seal S, Self WT (2008) Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ Sci Technol 42(13):5014–5019PubMedCrossRefGoogle Scholar
  33. 33.
    Li N, Wang S, Liu J et al (2010) The oxidative damage in lung of mice caused by lanthanoide. Biol Trace Elem Res 134(1):68–78PubMedCrossRefGoogle Scholar
  34. 34.
    Steger-Hartmann T, Raschke M, Riefke B et al (2009) The involvement of pro-inflammatory cytokines in nephrogenic systemic fibrosis—a mechanistic hypothesis based on preclinical results from a rat model treated with gadodiamide. Exp Toxicol Pathol 61(6):537–552PubMedCrossRefGoogle Scholar
  35. 35.
    Wermuth PJ, Del Galdo F, Jimenez SA (2009) Induction of the expression of profibrotic cytokines and growth factors in normal human peripheral blood monocytes by gadolinium contrast agents. Arthritis Rheum 60(5):1508–1518PubMedCrossRefGoogle Scholar
  36. 36.
    Del Galdo F, Wermuth PJ, Addya S et al (2010) NFkappaB activation and stimulation of chemokine production in normal human macrophages by the gadolinium-based magnetic resonance contrast agent Omniscan: possible role in the pathogenesis of nephrogenic systemic fibrosis. Ann Rheum Dis 69(11):2024–2033PubMedCrossRefGoogle Scholar
  37. 37.
    Bhagavathula N, Dame MK, Dasilva M et al (2010) Fibroblast response to gadolinium: role for platelet-derived growth factor receptor. Invest Radiol 45(12):769–777PubMedCrossRefGoogle Scholar
  38. 38.
    DaSilva M, O'Brien Deming M, Fligiel SE et al (2010) Responses of human skin in organ culture and human skin fibroblasts to a gadolinium-based MRI contrast agent: comparison of skin from patients with end-stage renal disease and skin from healthy subjects. Invest Radiol 45(11):733–739PubMedCrossRefGoogle Scholar
  39. 39.
    Varani J, Perone P, Griffiths CE et al (1994) All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently. J Clin Invest 94(5):1747–1756PubMedCrossRefGoogle Scholar
  40. 40.
    Li JX, Liu JC, Wang K et al (2010) Gadolinium-containing bioparticles as an active entity to promote cell cycle progression in mouse embryo fibroblast NIH3T3 cells. J Biol Inorg Chem 15(4):547–557PubMedCrossRefGoogle Scholar
  41. 41.
    Fisher GJ, Datta SC, Talwar HS et al (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379(6563):335–339PubMedCrossRefGoogle Scholar
  42. 42.
    Varani J, Shayevitz J, Perry D et al (1990) Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration. Am J Pathol 136(6):1275–1281PubMedGoogle Scholar
  43. 43.
    Kitamura H, Ichinose S, Hosoya T et al (2007) Inhalation of inorganic particles as a risk factor for idiopathic pulmonary fibrosis–elemental microanalysis of pulmonary lymph nodes obtained at autopsy cases. Pathol Res Pract 203(8):575–585PubMedCrossRefGoogle Scholar
  44. 44.
    Rice RH, Vidrio EA, Kumfer BM et al (2009) Generation of oxidant response to copper and iron nanoparticles and salts: stimulation by ascorbate. Chem Biol Interact 181(3):359–365PubMedCrossRefGoogle Scholar
  45. 45.
    Newton BB, Jimenez SA (2009) Mechanism of NSF: new evidence challenging the prevailing theory. J Magn Reson Imaging 30(6):1277–1283PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar BP, Shivakumar K, Kartha CC et al (1996) Magnesium deficiency and cerium promote fibrogenesis in rat heart. Bull Environ Contam Toxicol 57(4):517–524PubMedCrossRefGoogle Scholar
  47. 47.
    Valiathan SM, Kartha CC (1990) Endomyocardial fibrosis—the possible connexion with myocardial levels of magnesium and cerium. Int J Cardiol 28(1):1–5PubMedCrossRefGoogle Scholar
  48. 48.
    Valiathan MS, Kartha CC, Panday VK et al (1986) A geochemical basis for endomyocardial fibrosis. Cardiovasc Res 20(9):679–682PubMedCrossRefGoogle Scholar
  49. 49.
    Preeta R, Nair RR (1999) Stimulation of cardiac fibroblast proliferation by cerium: a superoxide anion-mediated response. J Mol Cell Cardiol 31(8):1573–1580PubMedCrossRefGoogle Scholar
  50. 50.
    Nair RR, Preeta R, Smitha G et al (2003) Variation in mitogenic response of cardiac and pulmonary fibroblasts to cerium. Biol Trace Elem Res 94(3):237–246PubMedCrossRefGoogle Scholar
  51. 51.
    Haley TJ, Komesu N, Efros M et al (1964) Pharmacology and toxicology of lutetium chloride. J Pharm Sci 53:1186–1188PubMedCrossRefGoogle Scholar
  52. 52.
    Pidcock E, Moore GR (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem 6(5–6):479–489PubMedGoogle Scholar
  53. 53.
    Huang Y, Zhou Y, Castiblanco A et al (2009) Multiple Ca(2+)-binding sites in the extracellular domain of the Ca(2+)-sensing receptor corresponding to cooperative Ca(2+) response. Biochemistry 48(2):388–398PubMedCrossRefGoogle Scholar
  54. 54.
    Ward DT, Brown EM, Harris HW (1998) Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation and its response to divalent cations in vitro. J Biol Chem 273(23):14476–14483PubMedCrossRefGoogle Scholar
  55. 55.
    McLarnon SJ, Riccardi D (2002) Physiological and pharmacological agonists of the extracellular Ca2+-sensing receptor. Eur J Pharmacol 447(2–3):271–278PubMedCrossRefGoogle Scholar
  56. 56.
    Riccardi D, Maldonado-Perez D (2005) The calcium-sensing receptor as a nutrient sensor. Biochem Soc Trans 33(Pt 1):316–320PubMedGoogle Scholar
  57. 57.
    Pillai S, Bikle DD (1992) Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation. J Cell Physiol 151(3):623–629PubMedCrossRefGoogle Scholar
  58. 58.
    Chakrabarty S, Radjendirane V, Appelman H et al (2003) Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of beta-catenin/TCF activation. Cancer Res 63(1):67–71PubMedGoogle Scholar
  59. 59.
    Estacion M, Mordan LJ (1993) Competence induction by PDGF requires sustained calcium influx by a mechanism distinct from storage-dependent calcium influx. Cell Calcium 14(6):439–454PubMedCrossRefGoogle Scholar
  60. 60.
    Lansman JB (1990) Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J Gen Physiol 95(4):679–696PubMedCrossRefGoogle Scholar
  61. 61.
    Caldwell RA, Clemo HF, Baumgarten CM (1998) Using gadolinium to identify stretch-activated channels: technical considerations. Am J Physiol 275(2 Pt 1):C619–C621PubMedGoogle Scholar
  62. 62.
    Palasz A, Czekaj P (2000) Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol 47(4):1107–1114PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Katherine Bleavins
    • 1
  • Patricia Perone
    • 1
  • Madhav Naik
    • 1
  • Muneeb Rehman
    • 1
  • Muhammad N. Aslam
    • 1
  • Michael K. Dame
    • 1
  • Sasha Meshinchi
    • 1
    • 2
  • Narasimharao Bhagavathula
    • 1
  • James Varani
    • 1
    Email author
  1. 1.Department of PathologyUniversity of MichiganAnn ArborUSA
  2. 2.Cell and Developmental Biology, Microscopy and Image-Analysis LaboratoryUniversity of MichiganAnn ArborUSA

Personalised recommendations