Effect of Zinc and Selenium Supplementation on Serum Testosterone and Plasma Lactate in Cyclist After an Exhaustive Exercise Bout


Zinc and selenium are essential minerals and have roles for more than 300 metabolic reactions in the body. The purpose of this study was to investigate how exhaustive exercise affects testosterone levels and plasma lactate in cyclists who were supplemented with oral zinc and selenium for 4 weeks. For this reason, 32 male road cyclists were selected equally to four groups: PL group, placebo; Zn group, zinc supplement (30 mg/day); Se group, selenium supplement (200 μg/day); and Zn–Se group, zinc–selenium supplement. After treatment, free, total testosterone, and lactate levels of subjects were determined before and after exhaustive exercise. Resting total, free testosterone, and lactate levels did not differ significantly between groups, and were increased by exercise (P > 0.05). Serum total testosterone levels in Zn group were higher than in Se group after exercise (P < 0.05). Serum-free testosterone levels in the Zn group were higher than the other groups (P < 0.05).There was an insignificant difference between levels of lactate in the four groups after exercise (P > 0.05). The results showed that 4-week simultaneous and separately zinc and selenium supplementation had no significant effect on resting testosterone and lactate levels of subjects who consume a zinc and selenium sufficient diet. It might be possible that the effect of zinc supplementation on free testosterone depends on exercise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Flinn JM, Hunter D, Linkous DH et al (2005) Enhance zinc consumption causes memory deficits and increased brain levels of zinc. Physiol Behav 83:793–803

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Cordova A, Alvarez-Mon M (1995) Behaviour of zinc in physical exercise: a special reference to immunity and fatigue. Neurosci Biobehav Rev 19:439–445

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Stallard L, Reeves PG (1997) Zinc deficiency in adult rats reduces the relative abundance of testis-specific angiotensin-converting enzyme mRNA. J Nutr 127:25–29

    PubMed  CAS  Google Scholar 

  4. 4.

    Favier AE (1992) The role of zinc in reproduction. Biol Trace Elem Res 32:363

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Fuse H, Kazama T, Ohta S, Fujiuchi Y (1999) Relationship between zinc concentrations in seminal plasma and various sperm parameters. Int Urol Nephrol 31:401–408

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    VanLoan MD, Sutherland B, Lowe NM, Turnland JR, King JC (1999) The effects of zinc depletion on peak force and total work of knee and shoulder extensor and flexor muscles. Int J Sport Nutr 9:125–135

    CAS  Google Scholar 

  7. 7.

    Kaya O, Gokdemir K, Kilic M, Baltaci AK (2006) Zinc supplementation in rats subjected to acute swimming exercise: its effect on testosterone levels and relation with lactate. Neuroendocrinol Lett 27(1–2):267–270

    PubMed  CAS  Google Scholar 

  8. 8.

    Shamberger RJ (1986) Selenium metabolism and function. Clin Physiol Biochem 4:42–49

    PubMed  CAS  Google Scholar 

  9. 9.

    Shu H (1989) Human selenium deficiency during total parenteral nutrition support (a case report). Zhongguo Yi Xue Ke Xue Yuan Xue Bao 11:74–76

    PubMed  CAS  Google Scholar 

  10. 10.

    Akil M, Gurbuz U, Bicer M, Sivrikaya A, Mogulkoc R, Baltaci AK (2011) Effect of selenium supplementation on lipid peroxidation, antioxidant enzymes, and lactate levels in rats immediately after acute swimming exercise. Biol Trace Elem Res. (in press)

  11. 11.

    Behne D, Weiler H, Kyriakopoulos A (1996) Effects of selenium deficiency on testicular morphology and function in rats. J Reprod Fertil 106:291–297

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Duma E, Orbai P, Derevenco P (1998) Blood levels of some electrolytes and hormones during exercise in athletes. Rom J Physiol 35:55–60

    PubMed  CAS  Google Scholar 

  13. 13.

    Huang WS, Yu MD, Lee MS, Cheng CY, Yang SP, Chin HM, Wu SY (2004) Effect of treadmill exercise on circulating thyroid hormone measurements. Med Princ Pract 13:15–19

    PubMed  Article  Google Scholar 

  14. 14.

    Rosolowska-Huszcz D (1998) The effect of exercise training intensity on thyroid activity at rest. J Physiol Pharmacol 49:457–466

    PubMed  CAS  Google Scholar 

  15. 15.

    Bosco C, Tihanyl J, Rivalta L, Parlato G, Tranquilli C, Pulvirenti G, Foti C, Viru M, Viru A (1996) Hormonal responses in strenuous jumping effort. Jpn J Physiol 46:93–98

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Kilic M, Baltaci AK, Gunay M et al (2006) The effect of exhaustion exercise on thyroid hormones and testosterone levels of elite athletes receiving oral zinc. Neuroendocrinol Lett 27(1–2):247–252

    PubMed  CAS  Google Scholar 

  17. 17.

    Institute of Medicine. Food and Nutrition Board (2001) (2000). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy Press: Washington, DC

  18. 18.

    Kuipers H, Verstappen FT, Keizer HA, Geurten P, Van kranenburg G (1985) Varability of aerobic performance in the laboratory and its physiological correlates. Int J Sports Med 6(4):197–201

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Kuipers H, Keizer HA, Brouns F, Saris WHM (1987) Carbohydrate feeding and glycogen synthesis during exercise in man. Pflugers Archives 410(6):662–665

    Google Scholar 

  20. 20.

    Cinar V, Polat Y, Baltaci AK, Mogulkoc R (2011) Effects of magnesium supplementation on testosterone levels of athletes and sedentary subjects at rest and after exhaustion. Biol Trace Elem Res 140(1):18–23

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Cinar V, Baltaci AK, Mogulkoc R, Kilic M (2009) Testosterone levels in athletes at rest and exhaustion: effects of calcium supplementation. Biol Trace Elem Res 129(1–3):65–69, Summer

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Bermudez JA, Perex-Pasten E, Villalpando S et al (1986) Low plasma zinc and androgen in insulin dependent diabetes mellitus. Arch Androl 16(2):151

    PubMed  Article  Google Scholar 

  23. 23.

    Berchtold P, Berger M, Cuppers HJ, Herrman J, Nieschlag E, Rudroff K et al (1978) Non-glucoregulatory hormones (T4, T3, rT3, TSH, testosterone) during physical exercise in juvenile type diabetic. Horm Metab Res 10:269–273

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ravaglia G, Forti P, Mailoi F, Pratell L, Vettori C, Bastagli L et al (2001) Regular moderate intensity physical activity and blood concentrations of endogenous anabolic hormones and thyroid hormones in aging men. Mech Aging Dev 122:191–203

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Woody CJ, Weber SL, Laubach HE, Ingram-Willey V, Amini-Alashti P, Sturbaum BA (1998) The effects of chronic exercise on metabolic and reproductive functions in male rats. Life Sci 62(4):327–332

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Hackney AC, Sinning WE, Bruot BC (1988) Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc 28:180–189

    Google Scholar 

  27. 27.

    Hackney AC, Fahrner CL, Stupnicki R (1997) Reproductive hormonal response to maximal exercise in endurance-trained men with low resting testosterone levels. Exp Clin Endocrinol Diabetes 105:291–295

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Hekonen M, Naveri H, Kuoppasalmi K, Huhtaniemi I (2001) Pituitary and gonadal function during physical exercise in the male rat. J Steroid Biochem 35(1):127–132

    Article  Google Scholar 

  29. 29.

    Ronsen O, Huge E, Klarlund PB, Bahr R (2001) Increased neuroendocrine response to a repeated bout of endurance exercise. Med Sci Sports Exerc 33(4):568–575

    PubMed  CAS  Google Scholar 

  30. 30.

    Cadoux-Hudson TA, Few JD, Imms FJ (1985) The effect of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol 154(3):321–325

    Article  Google Scholar 

  31. 31.

    Caballero MJ, Mena P, Maynarm M (1992) Changes in sex hormone binding globulin, high density lipoprotein cholesterol and plasma lipids in male cyclists during training and competition. Eur J Appl Physiol 64(1):9–13

    Article  CAS  Google Scholar 

  32. 32.

    Cumming DC, Brunsting LA, Strich G, Ries AL, Rebar RW (1986) Reproductive hormone increase response to acute exercise in men. Med Sci Sports Exerc 18(4):369–373

    PubMed  CAS  Google Scholar 

  33. 33.

    Lin H, Wang SW, Wang RY, Wang PS (2001) Stimulatory effect of lactate on testosterone production by rat Leydig cells. J Cell Biochem 83(1):147–154

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Raastad T, Bjoro T, Hallen J (2000) Hormonal responses to high and moderate intensity strength exercise. Eur J Appl Physiol 82(1–2):121–128

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Vaamonde D, Da Silva ME, Poblador MS, Lancho JL (2005) Reproductive profile of physical active men after exhaustive endurance exercise. Int J Sports Med 26:1–10

    Article  Google Scholar 

  36. 36.

    Jezova D, Vigas M, Tatar P, Kvetnansky R, Nazar K, Kaciuba-Uscilko H, Kozlowski S (1985) Plasma testosterone and catecholamine responses to physical exercise of different intensities in men. Eur J Appl Physiol 54(1):62–66

    Article  CAS  Google Scholar 

  37. 37.

    Nishi Y, Hatano S, Aihara K et al (1984) Effect of zinc ion on human chorionic gonadotropin stimulated in vitro production of cAMP and testosterone by rat testis. Pediatr Res 18:232

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Grumbach MM, Coute FA (1992) Disorders of sex in differentiation. In: Wilson JD, Foster WD (eds) Williams textbook of endocrinology, 8th edn. WB Saunders Co, Philadelphia, p 853

    Google Scholar 

  39. 39.

    Kilic M (2007) Effect of fatiguing bicycle exercise on thyroid hormone and testosterone levels in sedentary males supplemented with oral zinc. Neuroendocrinol Lett 28(5):181–185

    Google Scholar 

  40. 40.

    Koehler K, Parr MK, Geyer H et al (2007) Serum testosterone and urinary excretion of steroid hormone metabolites after administration of a high-dose zinc supplement. Eur J Clin Nutr 63:65–70

    PubMed  Article  Google Scholar 

  41. 41.

    Chandra RK (1984) Excessive intake of zinc impairs immune responses. JAMA 252:1443–1446

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Hooper PL, Visconti L, Gary PJ, Jahnson GE (1980) Zinc lowers high-density lipoprotein cholesterol levels. JAMA 244:1960–1961

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Haymes EM (1991) Vitamin and mineral supplementation to athletes. Int J Sport Nutr 1:146–169

    PubMed  CAS  Google Scholar 

  44. 44.

    Benardot RD (2006) Advanced sports nutrition. Human Kinetics PP, United State, p 92

    Google Scholar 

  45. 45.

    El-Sisy GA, Abdel-Rezek AMA (2008) Effect of dietary zinc or selenium supplementation on some reproductive hormone levels in male Baladi goats. Global Vet 2(2):46–50

    Google Scholar 

  46. 46.

    Grant S, McMillan K, Newell J, Wood L, Keatley S, Simpson D, Leslie K, Fairlie-Clark S (2002) Reproducibility of the blood lactate threshold, 4 mmol.l(−1) marker, heart rate and ratings of perceived exertion during incremental treadmill exercise in humans. Eur J Appl Physiol 87:159–166

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Baltaci AK, Ozyurek K, Mogulkoc R, Kurtoglu E, Ozkan Y, Celik I (2003) Effects of zinc deficiency and supplementation on the glycogen contents of liver and plasma lactate and leptin levels of rats performing acute exercise. Biol Trace Elem Res 96(1–3):227–236

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Leila Shafiei Neek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shafiei Neek, L., Gaeini, A.A. & Choobineh, S. Effect of Zinc and Selenium Supplementation on Serum Testosterone and Plasma Lactate in Cyclist After an Exhaustive Exercise Bout. Biol Trace Elem Res 144, 454–462 (2011). https://doi.org/10.1007/s12011-011-9138-2

Download citation


  • Exhaustion exercise
  • Lactate
  • Road cyclists
  • Testosterone
  • Selenium supplementation
  • Zinc supplementation