Abstract
High-fluoride (100 and 200 ppm) water was administered to rats orally to study the fluoride-induced changes on the thyroid hormone status, the histopathology of discrete brain regions, the acetylcholine esterase activity, and the learning and memory abilities in multigeneration rats. Significant decrease in the serum-free thyroxine (FT4) and free triiodothyronine (FT3) levels and decrease in acetylcholine esterase activity in fluoride-treated group were observed. Presence of eosinophilic Purkinje cells, degenerating neurons, decreased granular cells, and vacuolations were noted in discrete brain regions of the fluoride-treated group. In the T-maze experiments, the fluoride-treated group showed poor acquisition and retention and higher latency when compared with the control. The alterations were more profound in the third generation when compared with the first- and second-generation fluoride-treated group. Changes in the thyroid hormone levels in the present study might have imbalanced the oxidant/antioxidant system, which further led to a reduction in learning memory ability. Hence, presence of generational or cumulative effects of fluoride on the development of the offspring when it is ingested continuously through multiple generations is evident from the present study.
This is a preview of subscription content, access via your institution.




References
Varner JA, Jensen KF, Horvath W, Isaacson RL (1998) Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 784:284–298
Mullenix PJ, Denbesten PK, Schunior A, Kernan WJ (1995) Neurotoxicity of sodium fluoride in rats. Neurotoxicol Teratol 17:169–177
Shashi A (1992) Studies on alterations in brain lipid metabolism following experimental fluorosis. Fluoride 25:77–84
Shashi A, Singh JP, Thapar SP (1994) Effect of long-term administration of fluoride on levels of proteins, free amino acids and RNA in rabbit brain. Fluoride 27:155–159
Vani ML, Reddy KP (2000) Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice. Fluoride 33:17–26
He H, Chen ZS, Liu XM (1989) The influence of fluoride on human embryo. Chin J Ctrl Endem Dis 4:136–137
Xiang Q, Liang Y, Chen L, Wang C, Chen B, Chen X (2003) Effect of fluoride in drinking water on children’s intelligence. Fluoride 36:84–94
Nunez J, Couchie D, Aniello F, Bridoux AM (1991) Regulation by thyroid hormone of microtubule assembly and neuronal differentiation. Neurochem Res 16:975–982
Thompson CC, Potter GB (2000) Thyroid hormone action in neural development. Cereb Cortex 10:939–945
Anderson GW (2001) Thyroid hormones and the brain. Front Neuroendocrinol 22:1–17
Bernal J (2002) Action of thyroid hormone in brain. J Endocrinol Invest 25:268–288
Guan ZZ (1986) Morphology of the brain of the offspring of rats with chronic fluorosis. Zhonghua Bing Li Xue Za Zhi 15:297–299
Lu Y, Sun ZR, Wu LN, Wang X, Lu W, Liu SS (2000) Study of cognitive function impairment caused by fluorosis. Fluoride 33:74–78
Trivedi MH, Verma RJCN, Patel RS, Sathawara NG (2007) Effect of high fluoride water on children’s intelligence in India. Fluoride 40:178–183
Niu RY, Sun ZL, Wang JM, Cheng Z, Wang JD (2008) Effects of fluoride and lead on locomotor behavior and expression of Nissl body in brain of adult rats. Fluoride 41:276–282
Wu CX, Gu XL, Ge YM, Zhang JH, Wang JD (2006) Effects of high fluoride and arsenic on brain biochemical indexes and learning-memory in rats. Fluoride 39:274–279
Parveen M, Kumar S (2002) Acetylcholinesterase enzyme: a tool for monitoring environmental toxicity in mammals. In: Modern trends in environmental biology. CBS Publishers, New Delhi pp 307–323
Collins TF, Sprando RL, Black TN, Shackelford ME, Bryant MA, Olejnik N, Ames MJ, Rorie JI, Ruggles DI (2001) Multigenerational evaluation of sodium fluoride in rats. Food Chem Toxicol 39:601–613
CollinsTF SRL, Black TN, Shackelford ME, Olejnik N, Ames MJ, Rorie JI, Ruggles DI (2001) Developmental toxicity of sodium fluoride measured during multiple generations. Food Chem Toxicol 39:867–876
Cicek E, Aydin G, Akdogan M, Okutan H (2005) Effects of chronic ingestion of sodium fluoride on myocardium in a second generation of rats. Hum Exp Toxicol 24:79–87
Aydin G, Cicek E, Akdogan M, Gokalp O (2003) Histopathological and biochemical changes in lung tissues of rats following administration of fluoride over several generations. J Appl Toxicol 23:437–446
Karaoz E, Oncu M, Gulle K, Kanter M, Gultekin F, Karaoz S, Mumcu E (2004) Effect of chronic fluorosis on lipid peroxidation and histology of kidney tissues in first- and second-generation rats. Biol Trace Elem Res 102:199–208
Meral O, Ahmet K, Erdal K, Hakan D, Emin S, Fatih G (2007) Effect of long-term fluoride exposure on lipid preoxidation and histology of testes in first and second generation rats. Biol Trace Elem Res 118:260–268
Thomas JA (1996) Endocrine methods. Academic, New York, pp 157–186
Ellman GL, Courtney KD, Andres VJR, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
Inkielewicz I, Czarnowski W, Krechniak J (2003) Determination of fluoride in soft tissues. Fluoride 36:16–20
Bures J, Buresova O, Huston JP (1983) Techniques and basic experiments for the study of brain and behaviour. Elsevier, Amsterdam
Madan J, Puri JP, Singh JK (2009) Growth, feed efficiency and blood profile of buffalo calves consuming high levels of fluoride. Trop Anim Heal Prod 41:295–298
Zhan XA, Li JX, Wang M, Xu ZR (2006) Effects of fluoride on growth and thyroid function in young pigs. Fluoride 39:95–100
Trabelsi M, Guermazi F, Zeghal N (2001) Effect of fluoride on thyroid function and cerebellar development in mice. Fluoride 34:165–173
Wu C, Gu X, Wu Y, Wang J (2008) Effects of fluoride and arsenic on serum thyroid hormone in rats. Journal of Herbal Medicine and Toxicology 2:39–43
Das K, Chainy GB (2004) Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochem Res 29:1755–1766
Basha PM, Rai P, Begum S (2011) Evaluation of fluoride-induced oxidative stress in rat brain: a multigeneration study. Biol Trace Elem Res doi:10.1007/s12011-010-8780-4
Gao Q, Liu YJ, Guan ZZ (2009) Decreased learning and memory ability in rats with fluorosis: increased oxidative stress and reduced cholinesterase activity in the brain. Fluoride 42:277–285
Pereira M, Dombrowski PA, Losso EM, Chioca LR, Cunha CD, Andreatini R (2011) Memory impairment induced by sodium fluoride is associated with changes in brain monoamine levels. Neurotox Res 19:55–62. doi:10.1007/s12640-009-9139-5
El Lethey HS, Kamel MM, Shaheed IB (2010) Neurobehavioral toxicity produced by sodium fluoride in drinking water of laboratory rats. Journal of American Science 6(5):54–63
Thiel C, Huston J, Schwarting R (1998) Hippocampal acetylcholine and habituation learning. Neuroscience 85:1253–1262
Leussis M, Bolivar V (2006) Habituation in rodents: a review of behaviour, neurobiology and genetics. Neurosci Biobehav Rev 30:1045–1064
Thiel C, Müller C, Huston J, Schwarting R (1999) High versus low reactivity to a novel environment: behavioural pharmacology and neurochemical assessments. Neurosci 93:243–251
Long Y, Wang Y, Chen J, Jiang S, Nordberg A, Guan Z (2002) Decreased number of nicotinic acetylcholine receptors in the brain of rats with chronic fluorosis. Neurotoxicol Teratol 24:751–757
Wang JD, Ge YM, Ning HM, Wang SL (2004) Effects of high fluoride and low iodine on biochemical indexes of the brain and learning-memory of offspring rats. Fluoride 37:201–208
Bhatnagar M, Rao P, Saxena A, Bhatnagar R, Meena P, Barbar S, Chouhan A, Vimal S (2006) Biochemical changes in brain and other tissues of young adult female mice from fluoride in their drinking water. Fluoride 39:280–284
Zhai JX, Guo ZY, Hu CL, Wang QN, Zhu QX (2003) Studies on fluoride concentration and cholinesterase activity in rat hippocampus. Chin J Ind Hyg Occup Dis 21:102–104
Wen XP, Sang ZP, Chen YX (1998) The effect of fluoride on ChE and acetylcholine. Chin J Endemiol 17:56–57
Chinoy NJ, Memon MR (2001) Beneficial effects of some vitamins and calcium on fluoride and aluminium toxicity on gastrocnemius muscle and liver of male mice. Fluoride 34:21–33
Blaylock RL (2004) Excitotoxicity: a possible central mechanism in fluoride neurotoxicity. Fluoride 37:301–314
Blaylock RL (2007) Fluoride neurotoxicity and excitotoxicity/microglial activation: critical need for more research. Fluoride 40:89–92
Goodlett CR, Hamre KM, West JR (1992) Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res 47:129–141
Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793
Shivarajashankara YM, Shivashankara AR, Bhat PG, Rao SM, Rao SH (2002) Histological changes in the brain of young fluoride-intoxicated rats. Fluoride 35:12–21
Acknowledgment
The authors thank the University Grants Commission, New Delhi, India, for research grants (F. no. 31-220/2005 (SR) dated 31-03-2006 and MRP(S)/139/08-09/KABA027/UGC/SWRO).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Basha, P.M., Rai, P. & Begum, S. Fluoride Toxicity and Status of Serum Thyroid Hormones, Brain Histopathology, and Learning Memory in Rats: A Multigenerational Assessment. Biol Trace Elem Res 144, 1083–1094 (2011). https://doi.org/10.1007/s12011-011-9137-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-011-9137-3