Skip to main content
Log in

Inverse Correlation Between Serum Calcium and Copper Levels in Male Urban Colombian Preschool Children: Relationships with Anthropometry and Age

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper and calcium are essential for human growth and development. The present study was conducted to evaluate the relationship between calcium and copper levels, as well as their relationship to age and anthropometry in 180 preschool children ages 2–5 years old. Serum copper levels were inversely correlated with age (r = −0.184, P = 0.032) and height (r = −0.175, P = 0.043) in the whole group and with height for age Z score only in male children (r = −0.291, P = 0.016). The correlation with age is not maintained when it is analyzed for gender. Serum calcium values in the total group were inversely correlated with weight (r = −0.153, P = 0.044) and weight for height Z score (r = −0.246, P = 0.001). No differences were found for gender in the levels of both metals. A negative relationship between serum calcium and copper was found only in male children (r = −0.339, P = 0.005). Studies are required in other populations and experimental designs that can explain an inverse relationship between serum calcium and copper levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ralph A, Arthur J (2000) Iron, zinc and other trace elements. In: Garrow JS, James WPT, Ralph A (eds) Human nutrition and dietetics, 10th edn. Churchill Livingstone, New York

    Google Scholar 

  2. Fleet JC (2000) Zinc, copper and manganese. In: Stipanuk M (ed) Biochemical and physiological aspects of human nutrition. Saunders, Philadelphia

    Google Scholar 

  3. Cordano A (1998) Clinical manifestations of nutritional copper deficiency in infants and children. Am J Clin Nutr 67(suppl):1012S–1016S

    PubMed  CAS  Google Scholar 

  4. Castillo Durán C, Uauy R (1988) Copper deficiency impairs growth of infants recovering from malnutrition. Am J Clin Nutr 47:7l0–7l714

    Google Scholar 

  5. Insel P, Turner RE, Ross D (2004) Water and major minerals. In: Nutrition, 2nd edn. Jones and Bartlet, London

  6. Pettifor JM (2004) Nutritional rickets: deficiency of vitamin D, calcium, or both? Am J Clin Nutr 80(6 Suppl):1725S–1729S

    PubMed  CAS  Google Scholar 

  7. Harinarayan CV, Ramalakshmi T, Prasad UV et al (2007) High prevalence of low dietary calcium, high phytate consumption, and vitamin D deficiency in healthy south Indians. Am J Clin Nutr 85:1062–1067

    PubMed  CAS  Google Scholar 

  8. Gracia B, De Plata C, Rueda A et al (2005) Efecto de la complementación con zinc en la velocidad de crecimiento en niños preescolares. Colomb Med 36(Suppl 3):31–40

    Google Scholar 

  9. Hamill PU, Drizd TC, Johnson CL et al (1979) Physical growth: National Center for Health Statistics percentiles. Am J Clin Nutr 32:607–629

    PubMed  CAS  Google Scholar 

  10. Moore EW (1970) Ionized calcium in normal serum, ultrafiltrates and whole blood determined by ion-exchange electrodes. J Clin Invest 49:318–334

    Article  PubMed  CAS  Google Scholar 

  11. Gibson RS (1990) Assessment of copper status. In: Gibson RS (ed) Principles of nutritional assessment. Oxford University Press, New York, pp 520–526

    Google Scholar 

  12. Feliu M, Piñeiro LC et al (2005) Valores de referencia de cobre, zinc y selenio en niños. Acta Bioquím Clín Latinoam 39:459–462

    CAS  Google Scholar 

  13. Perrone L, Gialanella C, Moro R et al (1998) Zinc, copper and Iron in obese children and adolescents. Nutr Res 18:183–189

    Article  CAS  Google Scholar 

  14. Khaldi F, Mansour B, Hedhili A et al (1995) Zincemia, cupremia and infection in malnourished children. Arch Pediatr 2(9):854–857

    Article  PubMed  CAS  Google Scholar 

  15. Stearns G, Knowlton C (1981) The lack of relationship between the calcium, protein and inorganic phosphorus of the serum of no-nepthritic children. J Biol Chem 92:639–648

    Google Scholar 

  16. Kelishadi R, Alikhassy H, Amiri M (2002) Zinc and copper status in children with high family risk of premature cardiovascular disease. Ann Saudi Med 22:291–294

    PubMed  Google Scholar 

  17. Elcarte T, Elcarte R, Villa-Elizaga I et al (1997) Niveles séricos de Cobre y Zinc y su relación con factores de riesgo cardiovascular. Estudio epidemiológico en niños y adolescentes de Navarra. Anales 2:35–47

    Google Scholar 

  18. Silvia TM, Alarcòn OM, Alarcòn AO et al (2005) Niveles séricos de Cinc, Hierro y Cobre de preescolares que acuden a consulta en los ambulatorios urbanos tipo III de la cuidad de mérida. MedULA 12:1–4

    Google Scholar 

  19. Hatano S, Nishi Y, Usui T (1982) Copper levels in plasma and erythrocytes in healthy Japanese children and adults. Am J Clin Nutr 35:120–126

    PubMed  CAS  Google Scholar 

  20. Mockus I, Caminos JE, Díaz E, Delgado M (1999) Niveles séricos de zinc, hierro y cobre en tres grupos de escolares Colombianos. Relación con algunos parámetros antropométricos. Pediatria 34:100–104

    Google Scholar 

  21. Bremner I, Beattie JH (1990) Metallothionein and the trace minerals. Ann Rev Nutr 10:63–83

    Article  CAS  Google Scholar 

  22. Abu-Farsakh FA, Thajeel AH, Steiner S et al (1988) Sex-related correlation between zinc and calcium in serum. Clin Chem 34:467–468

    PubMed  CAS  Google Scholar 

  23. Massie HR, Aiello VR, Shumway ME, Armstrong T (1990) Calcium, iron, copper, boron, collagen, and density changes in bone with aging in C57BL/6J male mice. Exp Gerontol 25(5):469–481

    Article  PubMed  CAS  Google Scholar 

  24. Navarro-Alarcon M, Reyes-Pérez A, Lopez-Garcia H et al (2006) Longitudinal study of serum zinc and copper levels in hemodialysis patients and their relation to biochemical markers. Biol Trace Elem Res 113(3):209–222

    Article  PubMed  CAS  Google Scholar 

  25. Kies C, Harms JM (1989) Copper absorption as affected by supplemental calcium, magnesium, manganese, selenium and potassium. Adv Exp Med Biol 258:45–58

    PubMed  CAS  Google Scholar 

  26. Larsen T, Sandström B (1992) Effect of calcium, copper, and zinc levels in a rapeseed meal diet on mineral and trace element utilization in the rat. Biol Trace Elem Res 35(2):167–184

    Article  PubMed  CAS  Google Scholar 

  27. Saydam N, Adams TK et al (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1. J Biol Chem 277(23):20438–20445

    Article  PubMed  CAS  Google Scholar 

  28. Umemoto S, Tanaka M, Kawahara S et al (2004) Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats. Hypertens Res 27(11):877–885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Jesús Larrahondo (PhD) and the chemistry laboratory of Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) for their collaboration in metal measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Fabian Suárez-Ortegón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez-Ortegón, M.F., Jiménez, P., Mosquera, M. et al. Inverse Correlation Between Serum Calcium and Copper Levels in Male Urban Colombian Preschool Children: Relationships with Anthropometry and Age. Biol Trace Elem Res 144, 445–453 (2011). https://doi.org/10.1007/s12011-011-9132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9132-8

Keywords

Navigation