Skip to main content

Advertisement

Log in

Levels of Arsenic, Cadmium, Lead, Manganese and Zinc in Biological Samples of Paralysed Steel Mill Workers with Related to Controls

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The determination of essential trace and toxic elements in the biological samples of human beings is an important clinical screening procedure. This study aimed to assess the possible effects of environmental exposure on paralysed male workers (n = 75) belonging to the production and quality control departments of a steel mill. In this investigation, the concentrations of arsenic, cadmium, lead, manganese and zinc were determined in biological samples (blood, urine and scalp hair samples) of exposed paralysis and non-paralysed steel mill workers. For comparative purposes, unexposed healthy subjects of same age group were selected as referents. The elements in the biological samples were measured by atomic absorption spectrophotometry prior to microwave-assisted acid digestion. The validity of the methodology was checked by the biological certified reference materials. The results indicate that the level understudy elements in all three biological samples were significantly higher in paralysed workers of both groups (quality control and production) as compared to referents (p < 0.01). The possible connection of these elements with the aetiology of disease is discussed. The results also show the need for immediate improvements of workplace ventilation and industrial hygiene practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harrison P (2000) Managing spinal injury: critical care. The initial management of people with actual or suspected spinal cord injury in high dependency and intensive care units. Spinal Injuries Association, London

    Google Scholar 

  2. Parboosingh JS, Meininger V, McKenna-Yasek D, Brown RH, Rouleau GA (1999) Deletions causing spinal muscular atrophy do not predispose to amyotrophic lateral sclerosis. Arch Neurol 56(6):710–712

    Article  PubMed  CAS  Google Scholar 

  3. Grandjean P (1992) Reference intervals for trace elements in blood: significance of risk factors. Scand J Clin Lab Invest 52:321–337

    Article  PubMed  CAS  Google Scholar 

  4. Boutron CF (1991) Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s. Nature 353:153–156

    Article  CAS  Google Scholar 

  5. ATSDR (2005) Toxicological profile for lead. Draft for public comment

  6. World Health Organisation (WHO) (2001) Environmental health criteria document 224. Arsenic and arsenic compounds. International Programme on Chemical Safety (IPCS)

  7. International Agency for Research on Cancer (IARC) (2004) Summaries and evaluations. Arsenic in drinking water (group 1). Vol. 84. Lyon

  8. International Programme on Chemical Safety (IPCS) (1992) Inorganic arsenic compounds other than arsine. Health and safety guide no. 70. World Health Organisation, Geneva

    Google Scholar 

  9. Horng CJ, Tsai JL, Horng PH, Lin SC, Lin SR, Tzeng CC (2002) Determination of urinary lead, cadmium and nickel in steel production workers. Talanta 56:1109–1115

    Article  PubMed  CAS  Google Scholar 

  10. Fowler BA, Yamauchi H, Conner EA, Akkerman M (1993) Cancer risks for humans from exposure to semiconductor metals. Scand J Work Environ Health 19:101–103

    PubMed  CAS  Google Scholar 

  11. Liao YH, Hwang LC, Kao JS, Yiin SJ, Lin SF, Lin CH et al (2006) Lipid peroxidation in workers exposed to aluminum, gallium, indium, arsenic and antimony in the optoelectronic industry. J Occup Environ Med 48:789–793

    Article  PubMed  CAS  Google Scholar 

  12. Chen HW (2006) Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bull Environ Contam Toxicol 77:289–296

    Article  PubMed  CAS  Google Scholar 

  13. Chepesiuk R (1999) Where the chips fall: environmental health in the semiconductor industry. Environ Health Perspect 107:1–8

    Article  Google Scholar 

  14. Mukherjee AB, Bhattacharya P (2002) Atmospheric emissions, depositions, and transformations of arsenic in natural ecosystem in Finland. ScientificWorldJournal 2:1667–1675

    Article  PubMed  Google Scholar 

  15. Liu J, Zheng B, Aposhian HV et al (2002) Chronic arsenic poisoning from burning high arsenic-containing coal in Guizhou, China. Environ Health Perspect 110:119–122

    Article  PubMed  Google Scholar 

  16. Hwang YH, Lee ZY, Wang JD et al (2002) Monitoring of arsenic exposure with speciated urinary inorganic arsenic metabolites for ion implanter maintenance engineers. Environ Res 90:207–216

    Article  PubMed  CAS  Google Scholar 

  17. Wang CH (2002) Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation 125:1804–1809

    Article  Google Scholar 

  18. ATSDR (2007) Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. US Department of Health and Human Services, Public Health Service, Atlanta, Georgia. Available at http://www.atsdr.cdc.gov/toxprofiles/tp2.html

  19. ACGIH (2004) American Conference of Governmental Industrial Hygienists, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, Cincinnati, Ohio

  20. Lauwerys R, Bernard A, Roels H, Buchet JP (1994) Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40(7):1391–1394

    PubMed  CAS  Google Scholar 

  21. Waalkes MP, Coogan TP, Barter RA (1992) Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Crit Rev Toxicol 22:175–201

    Article  PubMed  CAS  Google Scholar 

  22. Jarup L, Berglund M, Elinder CG et al (1998) Health effects of cadmium exposure a review of the literature and a risk estimate. Scand J Work Environ Health 24:1–51

    Article  PubMed  Google Scholar 

  23. Saraymen R, SoylakM NI (1998) Serum cadmium levels of people living in Kayseri–Belsin region—Turkiye. Fresenius Environ Bull 7:403–405

    CAS  Google Scholar 

  24. Jarosinska D, Peddada S, Rogan J (2004) Assessment of lead exposure and associated health risk factors in urban children in Silesia, Poland. Environ Res 95:133–142

    Article  PubMed  CAS  Google Scholar 

  25. Mansouri MT, Cauli O (2009) Motor alterations induced by chronic lead exposure. Environ Toxicol Pharmacol 27:307–313

    Article  PubMed  CAS  Google Scholar 

  26. Baldwin DR, Marshall WJ (1999) Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem 36:267–300

    PubMed  CAS  Google Scholar 

  27. Pineau A, Fauconneau B, Rafael M et al (2002) Determination of lead in whole blood: comparison of the lead care blood lead testing system with Zeeman longitudinal electrothermal atomic absorption spectrometry. J Trace Elem Med Biol 16:11317

    Article  Google Scholar 

  28. Marchetti C (2003) Molecular targets of lead in brain neurotoxicity. Neurotox Res 5:221–236

    Article  PubMed  Google Scholar 

  29. Staes C, Matte T, Parrish RG et al (1995) Lead poisoning deaths in the United States, 1979 through 1988 [letter]. J Am Med Assoc 273:847–848

    Article  CAS  Google Scholar 

  30. Agency for Toxic Substances and Disease Registry (1992) Case studies in environmental medicine: lead toxicity. US Department of Health and Human Services, Fig. 1, p 8

  31. Centers for Disease Control (1991) Preventing lead poisoning in young children. USA Department of Health and Human Services, Centers for Disease Control, Atlanta. DHHS publication no. (PHS/CDC) 1992:633–627

  32. Mergler D, Huel G, Bowler R et al (1994) Nervous system dysfunction among workers with long-term exposure to manganese. Environ Res 64:151–180

    Article  PubMed  CAS  Google Scholar 

  33. Sjogren B, Iregren A, Frech W et al (1996) Effects on the nervous system among welders exposed to aluminium and manganese. Occup Environ Med 53:32–40

    Article  PubMed  CAS  Google Scholar 

  34. Bouchard M, Mergler D, Baldwin M et al (2003) Blood manganese and alcohol consumption interact on mood states among manganese alloy production workers. Neurotoxicology 24:641–647

    Article  PubMed  CAS  Google Scholar 

  35. Kazi TG, Afridi HI, Kazi N et al (2008) Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clin Chim Acta 389:114–119

    Article  PubMed  CAS  Google Scholar 

  36. Afridi HI, Kazi TG, Kazi N et al (2008) Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clin Pract 80:280–288

    Article  PubMed  CAS  Google Scholar 

  37. Afridi HI, Kazi TG, Kazi GH et al (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc Lett 39:203–214

    Article  CAS  Google Scholar 

  38. Khalique A, Ahmad S, Anjum T et al (2005) A comparative study based on gender and age dependence of selected metals in scalp hair. Environ Monit Assess 104(1–3):45–57

    Article  PubMed  CAS  Google Scholar 

  39. Senofonte O, Violante N, Caroli S (2000) Assessment of reference values for elements in human hair of urban schoolboys. J Trace Elem Med Biol 14(1):6–13

    Article  PubMed  CAS  Google Scholar 

  40. Wright RO, Amarasiriwardena C, Woolf AD et al (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27(2):210–216

    Article  PubMed  CAS  Google Scholar 

  41. Afridi HI, Kazi TG, Kazi N et al (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43

    Article  PubMed  CAS  Google Scholar 

  42. Afridi HI, Kazi TG, Arain MB et al (2007) Determination of Cd and Pb in biological samples by three ultrasonic-based samples treatment procedures followed by electrothermal atomic absorption spectrophotometer. J AOAC Int 90:470–478

    PubMed  CAS  Google Scholar 

  43. Granadillo VA, Tahan JE, Salgado O et al (1995) The influence of the blood levels of lead, aluminum and vanadium upon the arterial hypertension. Clin Chim Acta 233:47–59

    Article  PubMed  CAS  Google Scholar 

  44. Spera G, Lubrano C, Silvestro L et al (2005) Levels of cadmium and lead in blood: an application of validated methods in a group of patients with endocrine/metabolic disorders from the Rome area. Microchem J 79:349–355

    Article  Google Scholar 

  45. Ikeda M, Zhang ZW, Moon CS et al (1996) Background exposure of the general population to cadmium and lead in Tainan City, Taiwan. Arch Environ Contam Toxicol 30:121–126

    Article  PubMed  CAS  Google Scholar 

  46. Moon CS, Zhang ZW, Watanabe T et al (1996) Nonoccupational exposure of Malay women in Kuala Lumpur, Malaysia, to cadmium and lead. Biomarkers 1:81–85

    Article  CAS  Google Scholar 

  47. Kazi TG, Jalbani N, Arain MB et al (2009) Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. J Hazard Mater 163(1):302–307

    Article  PubMed  CAS  Google Scholar 

  48. Oteiza PI, Mackenzie GG, Verstraeten SV (2004) Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Aspects Med 25:103–115

    Article  PubMed  CAS  Google Scholar 

  49. Growdon JH, Fink JS (1994) Paralysis and movement disorder. In: Isselbacher KJ, Braunwald E, Wilson JD (eds) Harrison's principles of internal medicine. McGraw-Hill, New York, pp 115–125

    Google Scholar 

  50. Koh JY, Suh SW, Gwag BJ et al (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  PubMed  CAS  Google Scholar 

  51. Tokuda E, Ono SI, Ishige K et al (2007) Metallothionein proteins expression, copper and zinc concentrations, and lipid peroxidation level in a rodent model for amyotrophic lateral sclerosis. Toxicology 229(1-2):33–41

    Article  PubMed  CAS  Google Scholar 

  52. ATSDR (2000) Toxicological profile for arsenic (update). Agency for Toxic Substances and Disease Registry (ATSDR). US Department of Health & Human Services, Atlanta

    Google Scholar 

  53. Yu HS (2002) Peripheral vascular diseases resulting from chronic arsenic poisoning. J Dermatol 29:123–130

    PubMed  Google Scholar 

  54. Horing CJ, Horing PH, Lin SC et al (2002) Determination of urinary beryllium, arsenic, and selenium in steel production workers. Biol Trace Elem Res 88:235–246

    Article  Google Scholar 

  55. Chen HW (2007) Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull Environ Contam Toxicol 78:123–127

    Article  PubMed  CAS  Google Scholar 

  56. Chakraborty T, Das U, Poddar S et al (2006) Micronuclei and chromosomal abbreviations as biomarkers; a study in an arsenic exposed population in west Bengal, India. Bull Environ Contam Toxicol 76:970–976

    Article  PubMed  CAS  Google Scholar 

  57. Wallach JB (2000) Disorders due to physical and chemical agents. In: Wallach JB (ed) Interpretation of diagnostic tests, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 923–924

    Google Scholar 

  58. Yip SF, Yeung YM, Tsui EYK (2002) Severe neurotoxicity following arsenic therapy for acute promyelocytic leukemia: potentiation by thiamine deficiency. Blood 99:3481–3482

    Article  PubMed  CAS  Google Scholar 

  59. Elinder CG, Kjellstrom T, Lind B (1983) Cadmium exposure from smoking cigarettes: variations with time and country where purchased. Environ Res 32:220–227

    Article  PubMed  CAS  Google Scholar 

  60. Jaleel MA, Noreen R, Baseer A (2001) Concentration of heavy metals in drinking water of different localities in District East Karachi. J Ayub Med Coll 4:12–15

    Google Scholar 

  61. Revis NW, Zinsmeister AR, Bull R (1981) Atherosclerosis and hypertension induction by lead and cadmium ions: an effect prevented by calcium ion. Proc Natl Acad Sci USA 78:6494–6498

    Article  PubMed  CAS  Google Scholar 

  62. Dickel H, Kuss O, Schmidt A, Diepgen TL (2002) Occupational relevance of positive standard patch-test results in employed persons with an initial report of an occupational disease. Int Arch Occup Environ Health 75:423–434

    Article  PubMed  CAS  Google Scholar 

  63. Bar-Sela S, Reingold S, Richter ED (2001) Amyotrophic lateral sclerosis in a battery-factory worker exposed to cadmium. Int Arch Occup Environ Health 7:109–112

    CAS  Google Scholar 

  64. Koh HL, Woo SO (2000) Chinese proprietary medicine in Singapore. Drug Saf 23(5):351–362

    Article  PubMed  CAS  Google Scholar 

  65. Pan TC, Horng CJ, Lin SR (1993) Study on urinary arsenic, lead and cadmium concentrations in steel production workers. Kaohsiung J Med Sci 9:643–649

    CAS  Google Scholar 

  66. Lin SM (1991) Optimization of graphite furnace atomic absorption spectrophotometry for determination of trace cadmium, lead and nickel in urine. Anal Sci 7:155–158

    Article  CAS  Google Scholar 

  67. Burguera JL, Burguera M, Cruzo LL, Naranjo OR (1986) Determination of lead in the urine of exposed and unexposed adults by extraction and flow-injection/atomic absorption spectrometry. Anal Chim Acta 186:273–277

    Article  CAS  Google Scholar 

  68. Estaban E, Rubin CH, Jones RL, Noonan G (1999) Hair and blood as substrates for screening children for lead poisoning. Arch Environ Health 54:436–440

    Article  Google Scholar 

  69. Kim R, Rotnitzky A, Aparrow D et al (1996) A longitudinal study of low level lead exposure and impairment of renal function: the Normative Aging Study. J Am Med 275:1177–1181

    CAS  Google Scholar 

  70. Sukumar A, Subramanian R (1992) Elements in hair and nails of urban residents of New Delhi. CHD, hypertensive, and diabetic cases. Biol Trace Elem Res 1:89–97

    Article  Google Scholar 

  71. WHO (1995) IPCS environmental health criteria, lead. World Health Organization

  72. Berg D, Hochstrasser H (2006) Iron metabolism in parkinsonian syndromes. Mov Disord 21:1299–1310

    Article  PubMed  Google Scholar 

  73. Zecca L, Youdim MBH, Riederer P et al (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  PubMed  CAS  Google Scholar 

  74. Zhifang C, Qinfang Q, Xiangqian F, et al. (2008) A study on environmental pollution monitoring and occupational health in the Capital Iron and Steel Company, Beijing, China, using nuclear and related analytical techniques. Assessment of levels and “health-effects” of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. International Atomic Energy Agency (IAEA), IAEA, Vienna, 2007, IAEA-TECDOC-1576, pp 41–59

  75. Hudnell HK (1999) Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology 20:379–397

    PubMed  CAS  Google Scholar 

  76. Kucera J, Borska L, Bencko V et al (2008) Assessment of occupational exposure in manufacturing of stainless steel constructions using determination of selected metals in the workplace air and body tissues by neutron activation analysis and immunological tests. Assessment of levels and “health-effects” of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. International Atomic Energy Agency (IAEA), IAEA, Vienna, 2007, IAEA-TECDOC-1576, pp 60–73

  77. Roels HA, Ghyselen P, Buchet JP et al (1992) Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. Br J Ind Med 49:25–34

    PubMed  CAS  Google Scholar 

  78. Chia SE, Foo SC, Gan SL et al (1993) Neurobehavioural functions among workers exposed to manganese ore. Scand J Work Environ Health 19:264–270

    Article  PubMed  CAS  Google Scholar 

  79. Lucchini R, Selis L, Folli D et al (1995) Neurobehavioral effects of manganese in workers from a ferroalloy plant after temporary cessation of exposure. Scand J Work Environ Health 21:143–149

    Article  PubMed  CAS  Google Scholar 

  80. Jiang Y, Zheng W, Long L et al (2007) Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure. Neurotoxicology 28:126–135

    Article  PubMed  CAS  Google Scholar 

  81. Huang CC, Lu CS, Chu NS et al (1993) Progression after chronic manganese exposure. Neurology 43:1479–1483

    Article  PubMed  CAS  Google Scholar 

  82. Alves G, Thebot J, Tracqui A et al (1997) Neurologic disorders due to brain manganese deposition in a jaundiced patient receiving long-term parenteral nutrition. JPEN 21:41–45

    Article  CAS  Google Scholar 

  83. Pomier-Layrargues G, Spahr L, Butterworth RF (1995) Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345(8951):735

    Article  PubMed  CAS  Google Scholar 

  84. Cranmer J, Mergler D, Williams-Johnson M (eds) (1999) Manganese. Are there effects from long-term, low-level exposure? Neurotoxicology 20:2–3

  85. Lucchini R, Bergamaschi E, Smargiassi A, Apostoli P (1997) Motor function, olfactory threshold, and hematological indices in manganese-exposed ferro-alloy workers. Environ Res 73:175–180

    Article  PubMed  CAS  Google Scholar 

  86. Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE (1995) Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am J Clin Nutr 62:1490–1500

    Google Scholar 

  87. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  88. Chiba M, Masironi R (1992) Toxic and trace elements in tobacco and tobacco smoke. Bull World Health Organ 70:269–275

    PubMed  CAS  Google Scholar 

  89. Zaman K, Pardini RS (1996) An overview of the relationship between oxidative stress and mercury and arsenic. Toxic Subst Mech 15:151–181

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Higher Education Commission, Islamabad, Pakistan, for sponsoring this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afridi, H.I., Kazi, T.G., Kazi, A.G. et al. Levels of Arsenic, Cadmium, Lead, Manganese and Zinc in Biological Samples of Paralysed Steel Mill Workers with Related to Controls. Biol Trace Elem Res 144, 164–182 (2011). https://doi.org/10.1007/s12011-011-9063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9063-4

Keywords

Navigation