Skip to main content
Log in

Valproic Acid Modulates Superoxide Dismutase, Uric Acid-Independent FRAP and Zinc in Blood of Adult Epileptic Patients

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We aimed to evaluate changes in antioxidant status in blood during valproate (VPA) monotherapy of adult patients with epilepsy. Antioxidant enzymes [plasma superoxide dismutase (pSOD), erythrocyte superoxide dismutase (eSOD)] and non-enzymatic indices [concentration of trace elements in serum: selenium, copper, zinc (sZn) and uric acid (UA), as well as the ferric reducing ability of plasma (FRAP) and UA-independent FRAP (UAiFRAP)] were evaluated in 21 adult patients with epilepsy and 21 healthy controls. Significant differences between the study group and controls were found for pSOD (p = 0.002) and UAiFRAP (p = 0.003). pSOD was higher, whilst UAiFRAP was lower in patients compared to controls. The activity of eSOD was higher in patients treated with VPA for a longer period (7–14 years) in comparison to controls (p = 0.001) and patients with a short period of VPA treatment (p < 0.001). Patients with uncontrolled epilepsy exhibited higher sZn than seizure-free patients (p = 0.041). Standard diet and moderate use of alcohol and/or nicotine did not exert significant effects on redox balance. We conclude that the antioxidant status of epileptic patients is modified by valproate monotherapy. The frequency of seizures and duration of VPA therapy are associated with changes of oxidative/antioxidative balance. The most sensitive and relevant parameters for antioxidative defence mechanism are pSOD, UAiFRAP and sZn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AEDs:

Antiepileptic drugs

eCAT:

Erythrocyte catalase

eSOD:

Erythrocyte superoxide dismutase

FRAP:

Ferric reducing ability of plasma

GPX:

Glutathione peroxidase

GPX3:

Plasma glutathione peroxidase

IGE:

Idiopathic generalised epilepsy

pSOD:

Plasma superoxide dismutase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

sCu:

Serum copper concentration

SOD:

Superoxide dismutase

sSe:

Serum selenium concentration

sZn:

Serum zinc concentration

UA:

Uric acid

UAiFRAP:

Uric acid-independent ferric reducing ability of plasma

VPA:

Valproate

References

  1. Majkowski J (2007) Epileptogenesis—the role of oxygen stress. Epileptologia 15:225–240

    Google Scholar 

  2. Haldar S, Rowland IR, Barnett YA et al (2007) Influence of habitual diet on antioxidant status: a study in a population of vegetarians and omnivores. Eur J Clin Nutr 61:1011–1022

    Article  PubMed  CAS  Google Scholar 

  3. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  4. Ayçiçek A, Işcan A (2007) The effects of carbamazepine, valproic acid and phenobarbital on the oxidative and antioxidative balance in epileptic children. Eur Neurol 57:65–69

    Article  PubMed  Google Scholar 

  5. Torbati D, Church DF, Keller JM, Pryor WA (1992) Free radical generation in the brain precedes hyperbaric oxygen induced convulsions. Free Radic Biol Med 13:101–106

    Article  PubMed  CAS  Google Scholar 

  6. Wang JF, Azzam JE, Young LT (2003) Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience 116:485–489

    Article  PubMed  CAS  Google Scholar 

  7. Sudha K, Rao AV, Rao A (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303:19–24

    Article  PubMed  CAS  Google Scholar 

  8. Hamed SA, Abdellah MM, El-Melegy N (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant system in epileptic patients. J Pharmacol Sci 96:465–473

    Article  PubMed  CAS  Google Scholar 

  9. Verrotti A, Scardapane A, Franzoni E, Manco R, Chiarelli F (2008) Increased oxidative stress in epileptic children treated with valproic acid. Epilepsy Res 78:171–177

    Article  PubMed  CAS  Google Scholar 

  10. Yiş U, Seçkin E, Kurul SH, Kuralay F, Dirik E (2009) Effects of epilepsy and valproic acid on oxidant status in children with idiopathic epilepsy. Epilepsy Res 84:232–237

    Article  PubMed  Google Scholar 

  11. Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399

    Article  Google Scholar 

  12. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  13. Annanmaki T, Muuronen A, Murros K (2007) Low plasma uric acid level in Parkinson's disease. Mov Disord 22:1133–1137

    Article  PubMed  Google Scholar 

  14. Zagrodzki P, Nicol F, McCoy MA et al (1998) Iodine deficiency in cattle: compensatory changes in thyroidal selenoenzymes. Res Vet Sci 64:209–211

    Article  PubMed  CAS  Google Scholar 

  15. Siska IR, Avram J, Tatu C, Bunu C, Schneider F, Maties R (1999) Some aspects concerning the antioxidant capacity of venous blood in lower limbs varicose veins. Adv Exp Med Biol 471:445–452

    Article  PubMed  CAS  Google Scholar 

  16. Nebot C, Moutet M, Huet P, Xu JZ, Yadan JC, Chaudiere J (1993) Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem 214:442–451

    Article  PubMed  CAS  Google Scholar 

  17. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  18. Chapman SA, Wacksman GP, Patterson BD (2001) Pancreatitis associated with valproic acid: a review of the literature. Pharmacotherapy 21:1549–1560

    Article  PubMed  CAS  Google Scholar 

  19. Pippenger CE, Meng X, Van Lente F, Rotliner AD (1989) Valproate therapy depresses GSHpX and SOD enzyme activity. A possible mechanism for valproate induced idiosyncratic drug toxicity. Clin Chem 35:1173

    Google Scholar 

  20. Maertens P, Dyken P, Graf W et al (1995) Free radicals, anticonvulsants, and the neuronal ceroid-lipofuscinoses. Am J Med Genet 57:225–228

    Article  PubMed  CAS  Google Scholar 

  21. Armutcu F, Ozerol E, Gurel A et al (2004) Effect of long-term therapy with sodium valproate on nail and serum trace element status in epileptic children. Biol Trace Elem Res 102:1–10

    Article  PubMed  CAS  Google Scholar 

  22. Yüksel A, Cengiz M, Seven M, Ulutin T (2000) Erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children with valproate and carbamazepine monotherapy. J Basic Clin Physiol Pharmacol 11:73–81

    Article  PubMed  Google Scholar 

  23. Turkdogan D, Toplan S, Karakoc Y (2002) Lipid peroxidation and antioxidative enzyme activities in childhood epilepsy. J Child Neurol 17:673–676

    Article  PubMed  Google Scholar 

  24. Cengiz M, Yüksel A, Seven M (2000) The effects of carbamazepine and valproic acid on the erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children. Pharmacol Res 41:423–425

    Article  PubMed  CAS  Google Scholar 

  25. Verrotti A, Basciani F, Trotta D et al (2002) Serum copper, zinc, selenium, glutathione peroxidase and superoxide dismutase levels in epileptic children before and after 1 year of sodium valproate and carbamazepine therapy. Epilepsy Res 48:71–75

    Article  PubMed  CAS  Google Scholar 

  26. Solowiej E, Sobaniec W (2003) The effect of antiepilepticdrug therapy on antioxidant enzyme activity and serum lipid peroxidation in young patients with epilepsy. Neurol Neurochir Pol 37:991–1003

    PubMed  Google Scholar 

  27. Mariani E, Cornacchiola V, Polidori MC et al (2006) Antioxidant enzyme activities in healthy old subjects: influence of age, gender and zinc status: results from the Zincage Project. Biogerontology 7:391–398

    Article  PubMed  CAS  Google Scholar 

  28. Marklund S (1980) Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. Acta Physiol Scand Suppl 492:19–23

    PubMed  CAS  Google Scholar 

  29. Johnson WT, Johnson LA, Lukaski HC (2005) Serum superoxide dismutase 3 (extracellular superoxide dismutase) activity is a sensitive indicator of Cu status in rats. J Nutr Biochem 16:682–692

    Article  PubMed  CAS  Google Scholar 

  30. Harvey LJ, McArdle HJ (2008) Biomarkers of copper status: a brief update. Brit J Nutr 99:S10–S13

    PubMed  CAS  Google Scholar 

  31. Perucca E (2002) Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 16:695–714

    Article  PubMed  CAS  Google Scholar 

  32. Morland C, Boldingh KA, Iversen EG, Hassel B (2004) Valproate is neuroprotective against malonate toxicity in rat striatum: an association with augmentation of high-affinity glutamate uptake. J Cereb Blood Flow Metab 24:1226–1234

    Article  PubMed  CAS  Google Scholar 

  33. Ueda Y, Yokoyama H, Nakajima A et al (2002) Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp Brain Res 147:219–226

    Article  PubMed  CAS  Google Scholar 

  34. Mariani E, Mangialasche F, Feliziani FT et al (2008) Effects of zinc supplementation on antioxidantenzyme activities in healthy old subjects. Exp Gerontol 43:445–451

    Article  PubMed  CAS  Google Scholar 

  35. Hughes S, Samman S (2006) The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J Am Coll Nutr 25:285–291

    PubMed  CAS  Google Scholar 

  36. Kürekçi AE, Alpay F, Tanindi S et al (1995) Plasma trace element, plasma glutathione peroxidase, and superoxide dismutase levels in epileptic children receiving antiepileptic drug therapy. Epilepsia 36:600–604

    Article  PubMed  Google Scholar 

  37. Barbeau A, Donaldson J (1974) Zinc, taurine, and epilepsy. Arch Neurol 30:52–58

    PubMed  CAS  Google Scholar 

  38. Higashi A, Ikeda T, Matsukura M, Matsuda I (1982) Serum zinc and vitamin E concentrations in handicapped children treated with anticonvulsants. Dev Pharmacol Ther 5:109–113

    PubMed  CAS  Google Scholar 

  39. Schott GD, Delves HT (1978) Plasma zinc levels with anticonvulsant therapy. Br J Clin Pharmacol 5:279–280

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by grant from Rinnekoti Research Foundation. The first author thanks Prof. Gerhard Bauer, Prof. Joanna Jędrzejczak and Prof. Jerzy Majkowski for their valuable comments.

Conflict of Interest

Dr. E. Płonka-Półtorak has received support for attendance in congresses in epilepsy and neurology and speaker’s honoraria from UCB-Pharma and Sanofi-Aventis. None of these relations is related to current submission. The remaining authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Płonka-Półtorak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Płonka-Półtorak, E., Zagrodzki, P., Chłopicka, J. et al. Valproic Acid Modulates Superoxide Dismutase, Uric Acid-Independent FRAP and Zinc in Blood of Adult Epileptic Patients. Biol Trace Elem Res 143, 1424–1434 (2011). https://doi.org/10.1007/s12011-011-9003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9003-3

Keywords

Navigation