Calcium Fructoborate—Potential Anti-inflammatory Agent

Abstract

Calcium fructoborate is a boron-based nutritional supplement. Its chemical structure is similar to one of the natural forms of boron such as bis-manitol, bis-sorbitol, bis-fructose, and bis-sucrose borate complexes found in edible plants. In vitro studies revealed that calcium fructoborate is a superoxide ion scavenger and anti-inflammatory agent. It may influence macrophage production of inflammatory mediators, can be beneficial for the suppression of cytokine production, and inhibits progression of endotoxin-associated diseases, as well as the boric acid and other boron sources. The mechanisms by which calcium fructoborate exerts its beneficial anti-inflammatory effects are not entirely clear, but some of its molecular biological in vitro activities are understood: inhibition of the superoxide within the cell; inhibition of the interleukin-1β, interleukin-6, and nitric oxide release in the culture media; and increase of the tumor necrosis factor-α production. Also, calcium fructoborate has no effects on lipopolysaccharide-induced cyclooxygenase-2 protein express. The studies on animals and humans with a dose range of 1–7 mg calcium fructoborate (0.025–0.175 mg elemental boron)/kg body weight/day exhibited a good anti-inflammatory activity, and it also seemed to have negligible adverse effect on humans.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Miljkovic D (1998) Boron carbohydrates complexes and uses thereof. October 8, US Patent 5962049

  2. 2.

    Miljkovic D, Scorei IR, Cimpoiasu VM et al (2009) Calcium fructoborate: plant-based dietary boron for human nutrition. J Diet Suppl 6:211–226

    Article  Google Scholar 

  3. 3.

    Scorei RI (2011) Calcium fructoborate: plant-based dietary boron as potential medicine for cancer therapy. Front Biosci S3(1):205–215

    Article  CAS  Google Scholar 

  4. 4.

    Scorei R, Ciubar R, Iancu C, Mitran V et al (2007) In vitro effects of calcium fructoborate on fMLP-stimulated human neutrophil granulocytes. Biol Trace Elem Res 118:27–37

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Scorei RI, Ciofrangeanu C, Ion R et al (2010) In vitro effects of calcium fructoborate upon production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages. Biol Trace Elem Res 135:334–344

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Scorei R, Cimpoiasu VM, Iordachescu D (2005) In vitro evaluation of the antioxidant activity of calcium fructoborate. Biol Trace Elem Res 107:127–134

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Scorei R, Ciubar R, Ciofrangeanu CM et al (2008) Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biol Trace Elem Res 122:197–205

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Hunt CD, Herbel JL, Idso JP (1994) Dietary boron modifies the effects of vitamin D, nutrition on indices of energy substrate utilization and mineral metabolism in the chick. J Bone Miner Res 9:171–182

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Scorei R, Popa R (2010) Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anticancer Agent Med Chem 10:346–351

    CAS  Google Scholar 

  10. 10.

    Criste RD, Grossu DV, Scorei R et al (2005) New investigations on the effect of the dietary boron on broilers and layers: boron and food quality. Arch Zoot 8:65–78. Available at http://www.ibna.ro/arhiva/AZ%208/AZ%208_06%20RCriste.pdf

    Google Scholar 

  11. 11.

    Hu H, Penn SG, Lebrilla CB et al (1997) Isolation and characterization of soluble boron complexes in higher plants. Plant Physiol 113:649–655

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Yamaki S (1995) Physiology and metabolism of fruit development: biochemistry of sugar metabolism and compartmentation in fruits. Acta Hort 398:109–120

    CAS  Google Scholar 

  13. 13.

    Matsunaga T, Nagata T (1995) In vivo 11B NMR observation of plant tissue. Anal Sci 11:889–892

    Article  CAS  Google Scholar 

  14. 14.

    Wang Z, Quebedeaux B (1997) Effects of water stress on the partitioning of 14C glucose, 14C sucrose and 14C sorbitol in apple shoots. Biotronics 26:73–83

    CAS  Google Scholar 

  15. 15.

    Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101

    Article  CAS  Google Scholar 

  16. 16.

    Woods WG (1996) Review of possible boron speciation relating to its essentiality. J Trace Elem Exp Med 9:153–163

    Article  CAS  Google Scholar 

  17. 17.

    Kobayashi M, Matoh T, Azuma JI (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020

    PubMed  CAS  Google Scholar 

  18. 18.

    Rotaru P, Scorei R, Hărăbor A et al (2010) Thermal analysis of a calcium fructoborate sample. Thermochim Acta 506:8–13

    Article  CAS  Google Scholar 

  19. 19.

    Söderholm S, Roos YH, Meinander N et al (1999) Raman spectra of fructose and glucose in the amorphous and crystalline states. J Raman Spectrosc 30:1009–1018

    Article  Google Scholar 

  20. 20.

    Pelmore H, Symons MCR (1986) N.M.R. studies of complexes formed by d-fructose and borate ions in aqueous solution. Carbohyd Res 155:206–211

    Article  CAS  Google Scholar 

  21. 21.

    Kim NH, Kim H-J, Kang D et al (2008) Conversion shift of d-fructose to d-psicose for enzyme-catalyzed epimerization by addition of borate. Appl Environ Microbiol 74:3008–3013

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Tătucu M, Rotaru P, Rău I et al (2010) Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim 100:1107–1114

    Article  Google Scholar 

  23. 23.

    Olczak-Kobza M (2004) Synthesis and thermal characterization of zinc(II) di(o-aminobenzoate) complexes of imidazole and its methyl derivatives. Thermochim Acta 419:67–71

    Article  CAS  Google Scholar 

  24. 24.

    Badea M, Olar R, Marinescu D et al (2007) Thermal stability of some new complexes bearing ligands with polymerizable groups. J Therm Anal Calorim 88:317–321

    Article  CAS  Google Scholar 

  25. 25.

    Badea M, Olar R, Marinescu D et al (2008) Thermal stability of new complexes bearing both acrylate and aliphatic amine as ligands. J Therm Anal Calorim 92:205–208

    Article  CAS  Google Scholar 

  26. 26.

    Szunyogová E, Mudronová D, Györyová K et al (2007) The physicochemical and biological properties of zinc(II) complexes. J Therm Anal Calorim 88:355–361

    Article  Google Scholar 

  27. 27.

    Tian ZR, Voigt JA, Jun Liu J et al (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Bauermann LP, Bill J, Aldinger F (2006) Bio-friendly synthesis of ZnO nanoparticles in aqueous solution at near-neutral pH and low temperature. J Phys Chem B 110:5182–5185

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Kropidłowska A, Rotaru A, Strankowski M et al (2008) Heteroleptic cadmium(II) complex, potential precursor for semiconducting CdS layers. Thermal stability and non-isothermal decomposition kinetics. J Therm Anal Calorim 91:903–909

    Article  Google Scholar 

  30. 30.

    Rotaru A, Mietlarek-Kropidłowska A, Constantinescu C et al (2009) CdS thin films obtained by thermal treatment of cadmium(II) complex precursor deposited by MAPLE technique. Appl Surf Sci 255:6786–6789

    Article  CAS  Google Scholar 

  31. 31.

    Rotaru A, Constantinescu C, Mândruleanu A et al (2010) Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochim Acta 498:81–91

    Article  CAS  Google Scholar 

  32. 32.

    Dumitru MD, Miljkovic D, Scorei RI et al (2010) FT-IR and Raman spectroscopic analysis of a calcium fructoborate sample. Physics AUC 20:113–119

    Google Scholar 

  33. 33.

    Wagner CC, Baran EJ (2008) Easy synthesis of CaB2O4 via pyrolysis of calcium fructoborate. Mater Res 11:493–494

    CAS  Google Scholar 

  34. 34.

    Wagner CC, Ferraresi Curotto V, Pis Diez R et al (2008) Experimental and theoretical studies of calcium fructoborate. Biol Trace Elem Res 122:64–72

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Yoshimura K, Mayazaki Y, Sawada S et al (1996) B- NMR studies on complexation of borate with linear and crosslinked polysaccharides. J Chem Soc Faraday Trans 92:651–656

    Article  CAS  Google Scholar 

  36. 36.

    Power PP, Woods WG (1997) The chemistry of boron and its speciation in plants. Plant Soil 193:1–13

    Article  CAS  Google Scholar 

  37. 37.

    Mazurek M, Perlin AS (1963) Borate complexing by 5-membered-ring vic-diols. Can J Chemistry 41:2403–2411

    Article  CAS  Google Scholar 

  38. 38.

    Nielsen FH (1997) Boron in human and animal nutrition. Plant Soil 193:199–208

    Article  CAS  Google Scholar 

  39. 39.

    Nielsen FH (19998) Boron-an overlooked element of potential nutritional importance. Nutr Today 23:4–7

    Article  Google Scholar 

  40. 40.

    Rainey CJ, Nyquist LA, Christensen RE et al (1999) Daily intake of boron from the American diet. J Amer Dietetic Assoc 99:335–341

    Article  CAS  Google Scholar 

  41. 41.

    Moseman RF (1994) Chemical disposition of boron in animals and humans. Environ Health Perspect 102:113–117

    PubMed  CAS  Google Scholar 

  42. 42.

    Devirian T, Volpe S (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–223

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Rainey C, Nyquist L (1998) Multicountry estimation of dietary boron intake. Biol Trace Elem Res 66:79–86

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    National Academy of Sciences, Institute of Medicine, Food and Nutrition Board (2002a) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. National Academy, Washington

  45. 45.

    Penn SG, Hu H, Brown PH et al (1997) Direct analysis of sugar alcohol borate complexes in plant extracts by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. Anal Chem 69:2471–2477

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Bielski RI (2003) Sugar alcohols. In: Lewus FA, Tanner W (eds) Encyclopedia of plant physiology, new series. V13A plant carbohydrates. I. Intercellular carbohydrates. Springer, New York, pp 158–192

    Google Scholar 

  47. 47.

    Fuleki T, Pelayo E, Palabay RB (1994) Sugar composition of varietal juices produced from fresh and stored apples. J Agric Food Chem 42:1266–1275

    Article  CAS  Google Scholar 

  48. 48.

    Suni M, Nyman M, Eriksson NA et al (2000) Carbohydrate composition and content of organic acids in fresh and stored apples. J Sci Food Agric 80:1538–1544

    Article  CAS  Google Scholar 

  49. 49.

    Baker SJ, Ding CZ, Akama T (2009) Therapeutic potential of boron-containing compounds. Future Med Chem 1:1275–1288

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Loomis WD, Durst RM (1992) Chemistry and biology of boron. Biofactors 3:229–239

    PubMed  CAS  Google Scholar 

  51. 51.

    Tate SS, Meister A (1978) Serine-borate complex as a transition-state inhibitor of y-glutamyl transpeptidase. Proc Natl Acad Sci USA 75:4806–4809

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Frantzen F, Grimsrud K, Heggli D-E et al (1995) Protein–boronic acid conjugates and their binding to low-molecular-mass cis-diols and glycated hemoglobin. J Chromatogr B Biomed Appl 670:37–45

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Holak W (1971) Atomic absorption determination of boron in foods. J Assoc Off Anal Chem 54:1138–1139

    PubMed  CAS  Google Scholar 

  54. 54.

    Holak W (1971) Collaborative study of the determination of boric acid in foods by atomic absorption spectrophotometry. J Assoc Off Anal Chem 55:890–891

    Google Scholar 

  55. 55.

    Zittle CA (1951) Reaction of borate with substances of biological interest. Adv Enzymol 12:493–527

    CAS  Google Scholar 

  56. 56.

    Dupre JN, Keenan MJ, Hegsted M et al (1994) Effects of dietary boron in rats fed a vitamin D-deficient diet. Environ Health Perspect 102:55–58

    PubMed  CAS  Google Scholar 

  57. 57.

    Nielsen FH, Shuler TR, Gallagher SK (1990) Effects of boron depletion and repletion on blood indicators of calcium status in humans fed a magnesium-low diet. J Trace Elem Exp Med 3:45–54

    CAS  Google Scholar 

  58. 58.

    Hunt CD (1989) Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biol Trace Elem Res 22:201–220

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Meacham SL, Taper LJ, Volpe SL (1994) Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environ Health Perspect 102:79–82

    PubMed  CAS  Google Scholar 

  60. 60.

    Nielsen FH (1994) Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspect 102:59–63

    PubMed  CAS  Google Scholar 

  61. 61.

    Nielsen FH, Shuler TR, Zimmerman TJ et al (1998) Magnesium and methionine deprivation affect the response of rats to boron deprivation. Biol Trace Elem Res 17:91–107

    Article  Google Scholar 

  62. 62.

    Nielsen FH, Hunt CD, Mullen LM et al (1987) Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J 1:394–397

    PubMed  CAS  Google Scholar 

  63. 63.

    Hunt CD (1998) Regulation of enzymatic activity: one possible role of dietary boron in higher animals and humans. Biol Trace Elem Res 66:205–225

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Benderdour M, Van Bui T, Hess K (2000) Effects of boron derivatives on extracellular matrix formation. J Trace Element Med Biol 14:168–173

    Article  CAS  Google Scholar 

  65. 65.

    Turner CP, Toye AM, Jones OTG (1998) Keratinocyte superoxide generation. Free Radical Biol Med 24:401–407

    Article  CAS  Google Scholar 

  66. 66.

    Hunt DC, Idso JP (1999) Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress. J Trace Elem Exp Med 12:221–233

    Article  CAS  Google Scholar 

  67. 67.

    Kettritz R, Falk RJ, Jennette JC et al (1977) Neutrophil superoxide release is required for spontaneous and fMLP-mediated but not for TNFα-mediated apoptosis. J Am Soc Nephrol 8:1091–1100

    Google Scholar 

  68. 68.

    Granfeldt D, Samuelsson M, Karlsson A (2002) Capacitative Ca2+ influx and activation of the neutrophil respiratory burst. Different regulation of plasma membrane- and granule-localized NADPH-oxidase. J Leukoc Biol 71:611–617

    PubMed  CAS  Google Scholar 

  69. 69.

    Uchimura K, Nagasaka A, Hayashi R et al (1999) Changes in superoxide dismutase activities and concentrations and myeloperoxidase activities in leukocytes from patients with diabetes mellitus. J Diabet Comp 13:264–270

    Article  CAS  Google Scholar 

  70. 70.

    Zychlinsky A, Fitting C, Cavaillon JM et al (1994) Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest 94:1328–1332

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Cao J, Jiang L, Zhang X et al (2008) Boric acid inhibits LPS-induced TNF-alpha formation through a thiol-dependent mechanism in THP-1 cells. J Trace Elem Med Biol 22:189–195

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Armstrong TA, Spears JW, Lloyd KE (2001) Inflammatory response, growth, and thyroid hormone concentrations are affected by long-term boron supplementation in gilts. J Anim Sci 79:1549–1556

    PubMed  CAS  Google Scholar 

  73. 73.

    Armstrong TA, Spears JW (2003) Effect of boron supplementation of pig diets on the production of tumor necrosis factor-alpha and interferon-gamma. J Anim Sci 81:2552–2561

    PubMed  CAS  Google Scholar 

  74. 74.

    Benderdour M, Hess K, Dzondo-Gadet M et al (1998) Boron modulates extracellular matrix and TNFα synthesis in human fibroblasts. Biochem Biophys Res Commun 246:746–751

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Benderdour M, Hess K, Dzondo-Gadet M et al (1997) Effect of boric acid solution on cartilage metabolism. Biochem Biophys Res Commun 234:263–268

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Pradervand S, Maurya MR, Subramaniam S (2006) Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages. Genome Biol 7:R11

    PubMed  Article  Google Scholar 

  77. 77.

    Calder PC (2003) N–3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38:343–352

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Rees D, Miles EA, Banerjee T et al (2006) Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am J Clin Nutr 83:331–342

    PubMed  CAS  Google Scholar 

  79. 79.

    Hardardóttir I, Kinsella JE (1992) Increasing the dietary (n–3) to (n–6) polyunsaturated fatty acid ratio increases tumor necrosis factor production by murine resident peritoneal macrophages without an effect on elicited peritoneal macrophages. J Nutr 122:1942–1951

    PubMed  Google Scholar 

  80. 80.

    Ferrucci L, Cherubini A, Bandinelli S et al (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91:439–446

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Nielsen FH (2003) Does boron have an essential function similar to an omega-3 fatty acid function? In: Anke, M, Muller R, Schafer U, Stoeppler M (eds) 21st Workshop on Macro and Trace elements, Friedrich Schiller University, Jena, Germany, October 18–19. Schubert, Leipzig, pp 1238–1250

  82. 82.

    Nathan C, Xie QW (1994) Nitric oxide syntheses. Roles, tolls, and controls. Cell 78:915–918

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Albina JE, Cui S, Mateo RB et al (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150:5080–5085

    PubMed  CAS  Google Scholar 

  84. 84.

    van den Berg R, Peters JA, van Bekkum H (1994) The structure and (local) stability constants of borate esters of mono- and di-saccharides as studied by 11B and 13C NMR spectroscopy. Carbohydr Res 253:1–12

    PubMed  Article  Google Scholar 

  85. 85.

    Luan Q, Desta T, Chehab L et al (2008) Inhibition of experimental periodontitis by a topical boron-based antimicrobial. J Dent Res 87:148–152

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Mattingly LH, Ruth A, Gault M et al (2007) Use of systemic proteasome inhibition as an immune modulating agent in disease. Endocr Metab Immune Disord Drug Targets 7:29–34

    PubMed  CAS  Google Scholar 

  87. 87.

    Nielsen FH (2008) Is boron nutritionally relevant? Nutr Rev 66:183–191

    PubMed  Article  Google Scholar 

  88. 88.

    Nielsen FH, Mullen LM, Nielsen EJ (1991) Dietary boron affects blood cell counts and hemoglobin concentrations in humans. J Trace Elem Exp Med 4:211–223

    CAS  Google Scholar 

  89. 89.

    Travers RL, Rennie GC, Newnham RE (1990) Boron and arthritis: the result of a double-blind pilot study. J Nutr Med 1:127–132

    Article  Google Scholar 

  90. 90.

    Newnham RE (1994) The role of boron in human nutrition. J Appl Nutr 46:81–85

    CAS  Google Scholar 

  91. 91.

    Nielsen FH (2004) Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. Biofactors 20:161–170

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Amstrong TA, Spears JVV, Crenshaw TD et al (2000) Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J Nutr 130:2575–2581

    Google Scholar 

  93. 93.

    Richart T, Li Y, Staessen J (2007) Renal versus extra renal activation of vitamin D in relations to atherosclerosis, arterial stiffening and hypertension. Am J Hypetens 20:1007–1015

    Article  CAS  Google Scholar 

  94. 94.

    Bord S, Horner A, Beeton CA et al (1999) Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) distribution in normal and pathological human bone. Bone 24:229–235

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Spector TD, Hart DJ, Nandra D, Doyle et al (2005) Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum 40(4):723–727

    Article  Google Scholar 

  96. 96.

    Dessein PH, Stanwix AE (2001) Inflammatory arthritis and cardiovascular disease may share a common predisposition. Rheumatology 40:703–704

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Khovidhunkit W, Kim M, Memon R et al (2004) Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 45:1169–1196

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Ridker PM, Rifai N, Rose L et al (2009) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565

    Article  Google Scholar 

  99. 99.

    An WS, Kim SE, Kim KH et al (2009) Associations between oxidized LDL to LDL ratio, HDL and vascular calcification in the feet of hemodialysis patients. J Korean Med Sci 24:115–120

    Article  Google Scholar 

  100. 100.

    World Health Organization (2010) International clinical trials registry platform search portal. Identifier ISRCTN46679573. A double-blind, placebo-controlled pilot study to evaluate calcium fructoborate effect on systemic inflammation and dyslipidaemia markers in middle-aged people with primary osteoarthritis. World Health Organization, Geneva. Available at http://apps.who.int/trialsearch/trial.aspx?trialid=ISRCTN46679573

Download references

Conflicts of interest

The authors have no relevant interests to declare.

Authors' information

RS is a Professor in the Biochemistry Department, University of Craiova. RP is a Master of Conferences in the Department of Physics, University of Craiova.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romulus Ion Scorei.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scorei, R.I., Rotaru, P. Calcium Fructoborate—Potential Anti-inflammatory Agent. Biol Trace Elem Res 143, 1223–1238 (2011). https://doi.org/10.1007/s12011-011-8972-6

Download citation

Keywords

  • Boron
  • Calcium fructoborate
  • Osteoporosis
  • Osteoarthritis
  • Anti-inflammatory
  • Antioxidant