Skip to main content
Log in

Intra-erythrocyte Magnesium Is Associated with Gamma-Glutamyl Transferase in Obese Children and Adolescents

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aims at determining the association between markers of hepatic injury and serum, urinary, and intra-erythrocyte magnesium concentrations and dietary magnesium intake in obese children and adolescents. In a case–control study, 42 obese children and adolescents (8–18 years) and 42 sex- and puberty-matched controls were studied. Serum, urinary, and intra-erythrocyte magnesium levels, indices of insulin sensitivity, and liver enzymes were measured. Dietary magnesium intake was assessed using a food frequency questionnaire. Obese children and adolescents exhibited insulin resistance as determined by a higher fasting insulin and the HOMA-IR (p < 0.001) and lower QUICKI indices (p = 0.001); in addition these subjects had significantly higher intra-erythrocyte magnesium (IEM) concentrations, than non-obese ones (3.99 ± 1.05 vs. 3.35 ± 1.26 mg/dL of packed cell; p = 0.015). Among liver enzymes, only gamma-glutamyl transferase (GGT) was significantly higher in obese than in non-obese subjects (22.7 ± 9.4 vs. 17.1 ± 7.9 U/l; p = 0.002). A positive association was found between GGT and IEM in both groups; however in multivariate analysis, in obese subjects, only GGT (p = 0.026) and, in non-obese subjects, only age (p = 0.006) remained as significant predictors of IEM. In conclusion, increased IEM concentration was seen in insulin-resistant obese children and adolescents; furthermore, serum GGT was associated with IEM, independently of body mass index and HOMA-IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huerta MG, Roemmich JN, Kington ML, Bovbjerg VE, Weltman AL, Holmes VF, Patrie JT, Rogol AD, Nadler JL (2005) Magnesium deficiency is associated with insulin resistance in obese children. Diab Care 28:1175–1181

    Article  CAS  Google Scholar 

  2. Moayeri H, Bidad K, Aghamohammadi A, Rabbani A, Anari S, Nazemi L, Gholami N, Zadhoush S, Hatmi ZN (2006) Overweight and obesity and their associated factors in adolescents in Tehran, Iran, 2004–2005. Eur J Pediatr 165:489–493

    Article  PubMed  Google Scholar 

  3. Baker JL, Olsen LW, Sorensen TI (2007) Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 357:2329–2337

    Article  PubMed  CAS  Google Scholar 

  4. Fawcett WJ, Haxby EJ, Male DA (1999) Magnesium: physiology and pharmacology. Br J Anaesth 83:302–320

    PubMed  CAS  Google Scholar 

  5. Chaudhary DP, Sharma R, Bansal DD (2010) Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res 134:119–129

    Article  PubMed  CAS  Google Scholar 

  6. Malon A, Brockmann C, Fijalkowska-Morawska J, Rob P, Maj-Zurawska M (2004) Ionized magnesium in erythrocytes—the best magnesium parameter to observe hypo- or hypermagnesemia. Clin Chim Acta 349:67–73

    Article  PubMed  CAS  Google Scholar 

  7. Paolisso G, Ravussin E (1995) Intracellular magnesium and insulin resistance: results in Pima Indians and Caucasians. J Clin Endocrinol Metab 80:1382–1385

    Article  PubMed  CAS  Google Scholar 

  8. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL (1999) Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the atherosclerosis risk in communities study. Arch Intern Med 159:2151–2159

    Article  PubMed  CAS  Google Scholar 

  9. Laires MJ, Moreira H, Monteiro CP, Sardinha L, Limao F, Veiga L, Goncalves A, Ferreira A, Bicho M (2004) Magnesium, insulin resistance and body composition in healthy postmenopausal women. J Am Coll Nutr 23:510S–513S

    PubMed  CAS  Google Scholar 

  10. Basso LE, Ubbink JB, Delport R (2000) Erythrocyte magnesium concentration as an index of magnesium status: a perspective from a magnesium supplementation study. Clin Chim Acta 291:1–8

    Article  PubMed  CAS  Google Scholar 

  11. De Leeuw I, Vansant G, Van Gaal L (1992) Magnesium and obesity: influence of gender, glucose tolerance, and body fat distribution on circulating magnesium concentrations. Magnes Res 5:183–187

    PubMed  Google Scholar 

  12. Tohidi M, Harati H, Hadaegh F, Mehrabi Y, Azizi F (2008) Association of liver enzymes with incident type 2 diabetes: a nested case control study in an Iranian population. BMC Endocr Disord 8:5

    Article  PubMed  Google Scholar 

  13. Strauss RS, Barlow SE, Dietz WH (2000) Prevalence of abnormal serum aminotransferase values in overweight and obese adolescents. J Pediatr 136:727–733

    Article  PubMed  CAS  Google Scholar 

  14. Ortega E, Koska J, Salbe AD, Tataranni PA, Bunt JC (2006) Serum gamma-glutamyl transpeptidase is a determinant of insulin resistance independently of adiposity in Pima Indian children. J Clin Endocrinol Metab 91:1419–1422

    Article  PubMed  CAS  Google Scholar 

  15. Rantala AO, Lilja M, Kauma H, Savolainen MJ, Reunanen A, Kesaniemi YA (2000) Gamma-glutamyl transpeptidase and the metabolic syndrome. J Intern Med 248:230–238

    Article  PubMed  CAS  Google Scholar 

  16. Kaushik GG, Sharm S, Sharma R, Mittal P (2009) Association between gamma glutamyl transferase and insulin resistance markers in healthy obese children. J Assoc Physicians India 57:695–698

    PubMed  Google Scholar 

  17. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  PubMed  CAS  Google Scholar 

  18. Goran MI, Gower BA (2001) Longitudinal study on pubertal insulin resistance. Diabetes 50:2444–2450

    Article  PubMed  CAS  Google Scholar 

  19. Millart H, Durlach V, Durlach J (1995) Red blood cell magnesium concentrations: analytical problems and significance. Magnes Res 8:65–76

    PubMed  CAS  Google Scholar 

  20. Esmaillzadeh A, Mirmiran P, Azizi F (2005) Whole-grain consumption and the metabolic syndrome: a favorable association in Tehranian adults. Eur J Clin Nutr 59:353–362

    Article  PubMed  CAS  Google Scholar 

  21. Willett W, Stampfer M (1998) Implications of total energy intake for epidemiologic analyses. In: Willett W (ed) Nutritional epidemiology. Oxford University Press, New York, pp 273–301

    Chapter  Google Scholar 

  22. Romani AM, Matthews VD, Scarpa A (2000) Parallel stimulation of glucose and Mg 2+ accumulation by insulin in rat hearts and cardiac ventricular myocytes. Circ Res 86:326–333

    PubMed  CAS  Google Scholar 

  23. Kjeldsen SE, Sejersted OM, Frederichsen P, Leren P, Eide IK (1990) Increased erythrocyte magnesium content in essential hypertension. Scand J Clin Lab Invest 50:395–400

    Article  PubMed  CAS  Google Scholar 

  24. Barbagallo M, Gupta RK, Dominguez LJ, Resnick LM (2000) Cellular ionic alterations with age: relation to hypertension and diabetes. J Am Geriatr Soc 48:1111–1116

    PubMed  CAS  Google Scholar 

  25. Schimatschek HF, Classen HG (1993) Age, sex and seasonal effects on plasma magnesium and calcium levels of 4859 children. In: Golf S, Dralle D, Vecchiet L (eds) magnesium. John Libbey & Company Ltd., London, pp 135–146

    Google Scholar 

  26. Hanley AJ, Williams K, Festa A, Wagenknecht LE, D’Agostino RB Jr, Kempf J, Zinman B, Haffner SM (2004) Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 53:2623–2632

    Article  PubMed  CAS  Google Scholar 

  27. Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 37:1202–1219

    Article  PubMed  Google Scholar 

  28. Erol A (2007) Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against increased oxidative stress. BioEssays 29:811–818

    Article  PubMed  CAS  Google Scholar 

  29. Barbagallo M, Dominguez LJ, Tagliamonte MR, Resnick LM, Paolisso G (1999) Effects of glutathione on red blood cell intracellular magnesium: relation to glucose metabolism. Hypertension 34:76–82

    PubMed  CAS  Google Scholar 

  30. Patrick L (2002) Nonalcoholic fatty liver disease: relationship to insulin sensitivity and oxidative stress. Treatment approaches using vitamin E, magnesium, and betaine. Altern Med Rev 7:276–291

    PubMed  Google Scholar 

  31. Minnich V, Smith MB, Brauner MJ, Majerus PW (1971) Glutathione biosynthesis in human erythrocytes. I. Identification of the enzymes of glutathione synthesis in hemolysates. J Clin Invest 50:507–513

    Article  PubMed  CAS  Google Scholar 

  32. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279:32345–32353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study, the fellowship thesis of Dr. S. Arbabi (in endocrinology), was supported by a grant (no. 179) from the Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences. The authors wish to thank the participants of the study, members of the laboratory, and Dr. Peymaneh Sarkheil for their help. We would also like to acknowledge Ms. Nilufar Shiva for linguistic editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohidi, M., Ghasemi, A., Hadaegh, F. et al. Intra-erythrocyte Magnesium Is Associated with Gamma-Glutamyl Transferase in Obese Children and Adolescents. Biol Trace Elem Res 143, 835–843 (2011). https://doi.org/10.1007/s12011-010-8949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8949-x

Keywords

Navigation