Skip to main content
Log in

Changes of Iron Stores and Duodenal Transepithelial Iron Transfer During Regular Exercise in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It is unclear whether regular exercise depletes body iron stores and how exercise regulates iron absorption. In this study, growing female Sprague–Dawley rats were fed a high-iron diet (300 mg iron/kg) and subjected to swimming for 1, 3, or 12 months. Their body weight, liver nonheme iron content (NHI), spleen NHI, blood hemoglobin (Hb) concentration, hematocrit (Hct), and kinetics of 59Fe transfer across isolated duodenal segments were then compared with sedentary controls. The main results were as follows: exercise for 1 month enhanced the transepithelial 59Fe transfer and increased liver NHI content and Hb concentration; exercise for 3 months inhibited transepithelial 59Fe transfer without affecting the liver and spleen NHI content, Hb concentration, and Hct; exercise for 12 months did not affect these parameters as compared with the corresponding sedentary controls; and the changes in transepithelial iron transfer were not associated with basolateral iron transfer. Our findings demonstrated that chronic, regular exercise in growing rats with a high dietary iron content does not deplete iron stores in the liver and spleen and may possibly enhance or inhibit duodenal iron absorption and even maintain duodenal iron absorption at the sedentary level, at least, in part depending on growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Suedekum NA, Dimeff RJ (2005) Iron and the athlete. Curr Sports Med Rep 4:199–202

    PubMed  Google Scholar 

  2. Novack V, Finestone AS, Constantini N et al (2007) The prevalence of low hemoglobin values among new infantry recruits and nonlinear relationship between hemoglobin concentration and physical fitness. Am J Hematol 82:128–133

    Article  PubMed  CAS  Google Scholar 

  3. Di Santolo M, Stel G, Banfi G et al (2008) Anemia and iron status in young fertile non-professional female athletes. Eur J Appl Physiol 102:703–709

    Article  PubMed  Google Scholar 

  4. Dubnov G, Foldes AJ, Mann G et al (2006) High prevalence of iron deficiency and anemia in female military recruits. Mil Med 171:866–869

    PubMed  Google Scholar 

  5. McClung JP, Marchitelli LJ, Friedl KE et al (2006) Prevalence of iron deficiency and iron deficiency anemia among three populations of female military personnel in the US Army. J Am Coll Nutr 25:64–69

    PubMed  CAS  Google Scholar 

  6. Woolf K, St Thomas MM, Hahn N et al (2009) Iron status in highly active and sedentary young women. Int J Sport Nutr Exerc Metab 19:519–535

    PubMed  CAS  Google Scholar 

  7. Petersen HL, Peterson CT, Reddy MB et al (2006) Body composition, dietary intake, and iron status of female collegiate swimmers and divers. Int J Sport Nutr Exerc Metab 16:281–295

    Article  PubMed  CAS  Google Scholar 

  8. Spodaryk K (2002) Iron metabolism in boys involved in intensive physical training. Physiol Behav 75:201–206

    Article  PubMed  CAS  Google Scholar 

  9. Pitsis GC, Fallon KE, Fallon SK et al (2004) Response of soluble transferring receptor and iron-related parameters to iron supplementation in elite, iron-depleted, nonanemic female athletes. Clin J Sport Med 14:300–304

    Article  PubMed  Google Scholar 

  10. Nikolaidis MG, Protosygellou MD, Petridou A et al (2003) Hematologic and biochemical profile of juvenile and adult athletes of both sexes: implications for clinical evaluation. Int J Sports Med 24:506–511

    Article  PubMed  CAS  Google Scholar 

  11. Röcker L, Hinz K, Holland K et al (2002) Influence of endurance exercise (triathlon) on circulating transferrin receptors and other indicators of iron status in female athletes. Clin Lab 48:307–312

    PubMed  Google Scholar 

  12. Strause L, Hegenauera J, Saltman P (1983) Effects of exercise on iron metabolism in rats. Nutr Res 3:79–89

    Article  CAS  Google Scholar 

  13. Gagne CM, Walberg-Rankin JL, Ritchey SJ (1994) Effects of exercise on iron status in mature female rats. Nutr Res 14:211–219

    Article  CAS  Google Scholar 

  14. Prasad MK, Pratt CA (1990) The effects of exercise and two levels of dietary iron on iron status. Nutr Res 10:1273–1283

    Article  CAS  Google Scholar 

  15. Bowering J, Norton GF (1981) Relationship between iron status and exercise in male and female growing rats. J Nutr 111:1648–1657

    PubMed  CAS  Google Scholar 

  16. Navas FJ, Córdova A (2000) Iron distribution in different tissues in rats following exercise. Biol Trace Elem Res 73:259–268

    Article  PubMed  CAS  Google Scholar 

  17. Ruckman KS, Sherman AR (1981) Effects of exercise on iron and copper metabolism in rats. J Nutr 111:593–1601

    Google Scholar 

  18. Xiao DS, Qian ZM (2000) Plasma nitric oxide and iron concentrations in exercised rats are negatively correlated. Mol Cell Biochem 208:163–166

    Article  PubMed  CAS  Google Scholar 

  19. Qian ZM, Xiao DS, Tang PL (2000) Changes of transferrin-free iron uptake by bone marrow erythroblasts in strenuously exercised rats. J Nutr Biochem 11:367–373

    Article  Google Scholar 

  20. Qian ZM, Xiao DS, Liao QK et al (2002) Effect of different durations of exercise on transferrin-bound iron uptake by rat erythroblast. J Nutr Biochem 13:47–54

    Article  Google Scholar 

  21. Kurtoglu E, Ugur A, Baltaci AK et al (2003) Effect of iron supplementation on oxidative stress and antioxidant status in iron-deficiency anemia. Biol Trace Elem Res 96:117–123

    Article  PubMed  CAS  Google Scholar 

  22. Kurtoglu E, Ugur A, Baltaci AK et al (2003) Activity of neutrophil NADPH oxidase in iron-deficient anemia. Biol Trace Elem Res 96:109–115

    Article  PubMed  CAS  Google Scholar 

  23. Ehn L, Carlmark B, Höglund S (1980) Iron status in athletes involved in intense physical activity. Med Sci Sports Exerc 12:61–64

    PubMed  CAS  Google Scholar 

  24. Nachtigall D, Nielsen P, Fischer R et al (1996) Iron deficiency in distance runners. A reinvestigation using Fe-labelling and non-invasive liver iron quantification. Int J Sports Med 17:473–479

    Article  PubMed  CAS  Google Scholar 

  25. Qian Q, Chai Z, Feng W et al (2002) Activable enriched stable isotope iron-58 for monitoring absorption rate of juvenile athletes for iron: a case study. Food Nutr Bull 23(3 Suppl):57–60

    PubMed  Google Scholar 

  26. Record IR, MacQueen SE, Dreosti IE (1990) Zinc, iron, vitamin E and erythrocyte stability in the rat. Biol Trace Elem Res 23:89–96

    Article  CAS  Google Scholar 

  27. Xiao DS, Ho KP, Qian ZM (2004) Nitric oxide inhibition decreases bleomycin-detectable iron in spleen, bone marrow cells and heart but not in liver in exercise rats. Mol Cell Biochem 260:31–37

    Article  PubMed  CAS  Google Scholar 

  28. Schümann K, Elsenhans B, Forth W (1999) Kinetic analysis of 59Fe movement across the intestinal wall in duodenal rat segments ex vivo. Am J Physiol 276:G431–G440

    PubMed  Google Scholar 

  29. Xiao DS, Jiang L, Che LL et al (2003) Nitric oxide and iron metabolism in exercised rat with L-arginine supplementation. Mol Cell Biochem 252:65–72

    Article  PubMed  CAS  Google Scholar 

  30. Ho KP, Xiao DS, Ke Y et al (2001) Exercise decreases cytosolic aconitase activity in the liver, spleen, and bone marrow in rats. Biochem Biophys Res Commun 282:264–267

    Article  PubMed  CAS  Google Scholar 

  31. Qian ZM, Xiao DS, Ke Y et al (2001) Increased nitric oxide is one of the causes of changes of iron metabolism in strenuously exercised rats. Am J Physiol 280:R739–R743

    CAS  Google Scholar 

  32. Finch C (1994) Regulators of iron balance in humans. Blood 84:1697–1702

    PubMed  CAS  Google Scholar 

  33. Bexfield N, Parcell AC, Nelson WB et al (2009) Adaptations to high-intensity intermittent exercise in rodents. J Appl Physiol 107:749–754

    Article  PubMed  Google Scholar 

  34. Yamaji S, Sharp P, Ramesh B et al (2004) Inhibition of iron transport across human intestinal epithelial cells by hepcidin. Blood 104:2178–2180

    Article  PubMed  CAS  Google Scholar 

  35. Mena NP, Esparza A, Tapia V et al (2008) Hepcidin inhibits apical iron uptake in intestinal cells. Am J Physiol 294:G192–198

    CAS  Google Scholar 

  36. Laftah AH, Ramesh B, Simpson RJ et al (2004) Effect of hepcidin on intestinal iron absorption in mice. Blood 103:3940–3944

    Article  PubMed  CAS  Google Scholar 

  37. Tennant J, Anderson E, Sharp P (2002) Erythropoietin stimulates iron uptake across the apical membrane of human intestinal Caco-2 cells. J Physiol 539P:S079

    Google Scholar 

  38. Roecker L, Meier-Buttermilch R, Brechtel L et al (2005) Iron-regulatory protein hepcidin is increased in female athletes after a marathon. Eur J Appl Physiol 95:569–571

    Article  PubMed  CAS  Google Scholar 

  39. Peeling P, Dawson B, Goodman C et al (2009) Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab 19:583–597

    PubMed  CAS  Google Scholar 

  40. Robson KJ (2004) Hepcidin and its role in iron absorption. Gut 53:617–619

    Article  PubMed  CAS  Google Scholar 

  41. Pinto JP, Ribeiro S, Pontes H et al (2008) Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha. Blood 111:5727–5733

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by research grants from the National Natural Science Foundation of China (30270639 and 30570894), the Jiangsu Science and Technology Department, China (BS2003022), and the Innovative Research Groups Foundation of the Jiangsu University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Sheng Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Che, LL., Xiao, DS., Xu, HX. et al. Changes of Iron Stores and Duodenal Transepithelial Iron Transfer During Regular Exercise in Rats. Biol Trace Elem Res 143, 1044–1053 (2011). https://doi.org/10.1007/s12011-010-8919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8919-3

Keywords

Navigation