Skip to main content

Bioavailability and Concentration of Heavy Metals in the Sediments and Leaves of Grey Mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini Creek, Iran

Abstract

The concentration and bioavailability of Ni, Cu, Cd, Zn, and Pb in the sediments and leaves of grey mangrove, Avicennia marina, were studied throughout Sirik Azini creek (Iran) with a view to determine heavy metals bioavailability, and two methods were used. Results show that Zn and Ni had the highest concentrations in the sediments, while Cd and Cu were found to have the lowest concentrations in the sediments. Compared to the mean concentrations of heavy metals in sedimentary rock (shales), Zn and Cu showed lower concentration, possibly indicating that the origin of these heavy metals is natural. A geo-accumulation index (I geo) was used to determine the degree of contamination in the sediments. I geo values for Zn, Cu, Pb, and Ni showed that there is no pollution from these metals in the study area. As heavy metal concentrations in leaves were higher than the bioavailable fraction of metals in sediments, it follows that bioconcentration factors (leaf/bioavailable sediment) for some metals were higher than 1.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  2. English S, Wilkinson C, Baker V (1997) Survey manual for tropical marine resources. Australia Institute of Marine Science, Townsville

    Google Scholar 

  3. Raman DJ, Jonathan MP, Srinivasalu S, Altrin JS, Mohan ASP, Mohan VR (2007) Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: application of acid leachable technique. Environ Pollut 145:245–257

    Article  Google Scholar 

  4. Hogarth PJ (1999) The biology of mangroves. Oxford University Press, New York

    Google Scholar 

  5. Walters BB, Ronnback P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89:220–236

    Article  Google Scholar 

  6. Duke NC (1992) Mangrove floristics and biogeography. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, DC, pp 63–100

    Chapter  Google Scholar 

  7. Ball MC (1996) Comparative ecophysiology of mangrove forest and tropical lowland moist forest. In: Mulkey SS, Chazdon RL, Smith AO (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 461–469

    Chapter  Google Scholar 

  8. Mackey AP, Hodgkinson M, Nardella R (1992) Nutrient levels and heavy metals in mangrove sediments from the Brisbane River, Australia. Mar Pollut Bull 24(8):418–420

    Article  CAS  Google Scholar 

  9. Lacerda LD, Carvalho CEV, Tanizaki KF, Ovallel ARC, Rezende CE (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25:252–257

    Article  Google Scholar 

  10. Rivail DM, Lamotte M, Donard OFX, Soriano-Sierra EJ, Robert M (1996) Metal contamination in surface sediments of mangroves, lagoons and Southern Bay in Florianopolis Island. Environ Technol 17(10):1035–1046

    Article  Google Scholar 

  11. Lacerda LD (1998) Trace metals biogeochemistry and diffuse pollution in mangrove ecosystems. ISME Mangrove Ecosyst Occas Pap 2:1–61

    Google Scholar 

  12. Tam NFY, Yao MWY (1998) Normalization and heavy metal contamination in mangrove sediments. Sci Total Environ 216(1–2):33–39

    CAS  Google Scholar 

  13. Harbison P (1986) Mangrove muds—a sink and a source for trace metals. Mar Pollut Bull 17:246–250

    Article  CAS  Google Scholar 

  14. Tam NFY, Wong YS (1993) Retention of nutrients and heavy metals in mangrove sediments receiving wastewater of different strengths. Environ Technol 14:719–729

    Article  CAS  Google Scholar 

  15. Tam NFY, Wong YS (1996) Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut 94:283–291

    PubMed  Article  CAS  Google Scholar 

  16. Tam NFY, Wong WS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    PubMed  Article  CAS  Google Scholar 

  17. Silva CAR, Silva APD, Oliveira SRD (2006) Concentration, stock and transport rate of heavy metals in a tropical red mangrove, Natal, Brazil. Mar Chem 99:2–11

    Article  Google Scholar 

  18. McFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves:a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  Google Scholar 

  19. Silva CAR, Lacerda LD, Rezende CE (1990) Heavy metal reservoirs in a red mangrove forest. Biotropica 22:339–345

    Article  Google Scholar 

  20. McFarlane GR, Pulkownik A, Burchett MD (2003) Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh: biological indication potential. Environ Pollut 123:139–151

    Article  Google Scholar 

  21. Taghizadeh AR (2007) Environmental management of Sirik mangrove forest. Islamic Azad University, Iran

    Google Scholar 

  22. Defew LH, Mair JM, Guzman HM (2005) An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Mar Pollut Bull 50:547–552

    PubMed  Article  CAS  Google Scholar 

  23. Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environ Pollut 120:455–461

    PubMed  Article  CAS  Google Scholar 

  24. Vázquez S, Moreno E, Carpena RO (2008) Bioavailability of metals and as from acidified multicontaminated soils: use of white lupin to validate several extraction methods. Environ Geochem Health 30:193–198

    PubMed  Article  Google Scholar 

  25. Lacerda LD, Pfeiffer WC, Fiszman M (1987) Heavy metal distribution, availability and fate in Sepetiba Bay, SE Brazil. Sci Total Environ 65:163–173

    Article  Google Scholar 

  26. Allen SE (1992) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  27. Bascomb CL (1964) Rapid method for the determination of cation exchange capacity of calcareous and non-calcareous soils. J Sci Food Agric 15:821–823

    Article  CAS  Google Scholar 

  28. Alloway BJ (1990) Heavy metals in soils. Wiley, New York

    Google Scholar 

  29. Davis RD, Carlton-Smith CH (1984) An investigation into the phytotoxicity of Zinc, Copper and Nickel using sewage sludge of controlled metal content. Environ Pollut 8:163–185

    Article  CAS  Google Scholar 

  30. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  31. Muller G (1979) Schwermetalle in den sedimentten des Rheins-Veranderugen seit. Umschau 79:778–783

    Google Scholar 

  32. Baker AJ, Walker PI (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants; evolutionary aspects. CRC Press, Florida, pp 155–178

    Google Scholar 

  33. Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance in plants. In: Shaw AJ (ed) Heavy metal tolerance in plants-evolutionary aspects. CRC Press, Florida, pp 179–193

    Google Scholar 

  34. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  35. Wen-jiao Z, Xia-yong C, Peng L (1997) Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay, China. Mar Ecol Prog Ser 159:293–301

    Article  Google Scholar 

  36. Pahalawattaarachchi V, Purushothaman CS, Vennila A (2009) Metal phytoremediation potential of Rhizophora mucronata (Lam.). Indian J Mar Sci 38:178–183

    CAS  Google Scholar 

  37. Sadiq M, Zaidi TH (1994) Sediment composition and metal concentrations in mangrove leaves from the Saudi coast of the Arabian Gulf. Sci Total Environ 155:1–8

    Article  CAS  Google Scholar 

  38. Bhosale LJ (1979) Distribution of trace elements in the leaves of mangroves. Indian J Mar Sci 8:58–59

    CAS  Google Scholar 

  39. Siddiqui PJA, Qasim R (1994) Variation in chemical constituents of mangrove foliage Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Pak J Sci Ind Res 37:137–143

    CAS  Google Scholar 

  40. Peng L, Wenjian Z, Zhenji L (1997) Distribution and accumulation of heavy metals in Avicennia marina community in Shenzhen, China. J Environ Sci 9:472–479

    CAS  Google Scholar 

  41. Spain AV, Holt JA (1980) The elemental status of the foliage and branchwood of seven mangrove species from Northern Queensland. Division of Soils divisional report no. 49. CSIRO, Melbourne

    Google Scholar 

  42. Nazil MF, Hashim NR (2010) Heavy metal concentrations in an important mangrove species, Sonneratia caseolaris, in Peninsular Malaysia. Environment Asia 3:50–55

    Google Scholar 

  43. Machado W, Silva-Filho EV, Oliveira RR, Lacerda LD (2002) Trace metal retention in mangrove ecosystems in Guanabara Bay. SE Brazil Mar Pollut Bull 44:1277–1280

    Article  CAS  Google Scholar 

  44. Saenger P, McConchie D, Clark M (1990) Mangrove forests as a buffer zone between anthropogenically polluted areas and the sea. In: Saenger P (ed.) Proceedings 1990 CZM workshop, Yeppoon, Qld, pp 280–297

  45. Rao CK, Chinnaraj S, Inamdar SN, Untawale AG (1991) Arsenic content in certain marine brown algae and mangroves from the Goa coast. Indian J Mar Sci 20:283–285

    CAS  Google Scholar 

  46. Tam NFY, Wong YS (1995) Mangrove soils as sinks for wastewaterborne pollutants. Hydrobiologia 296:231–242

    Article  Google Scholar 

  47. Thomas G, Fernandez TV (1997) Incidence of heavy metals in the mangrove flora and sediments in Kerala, India. Hydrobiologia 352:77–87

    Article  CAS  Google Scholar 

  48. Che RGO (1999) Concentration of 7 heavy metals in sediments and mangrove root samples from Mai Po, Hong Kong. Mar Pollut Bull 39:269–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding support for this project was provided by the Iranian Department of Environment, Hormozgan Office. The authors are grateful to Ghodrat Mirzadeh, Elyas Parvaresh, Nasrin Karimi, Maria Mohammadizadeh, Hasan Mehranpoor, Mostafa Mehranpoor, Asghar Bijani, and David Phillips for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Parvaresh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parvaresh, H., Abedi, Z., Farshchi, P. et al. Bioavailability and Concentration of Heavy Metals in the Sediments and Leaves of Grey Mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini Creek, Iran. Biol Trace Elem Res 143, 1121–1130 (2011). https://doi.org/10.1007/s12011-010-8891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8891-y

Keywords

  • Bioavailability
  • Heavy metals
  • Avicennia marina
  • Azini creek
  • Sirik mangrove forest