Skip to main content

Extremely Low-Frequency Magnetic Field Decreased Calcium, Zinc and Magnesium Levels in Costa of Rat

Abstract

Electromagnetic field (EMF) can affect cells due to biochemical change followed by a change in level of ions trafficking through membrane. We aimed to investigate possible changes in some elements in costa of rats exposed to long-term extremely low-frequency magnetic field (ELF-MF). Rats were exposed to 100 and 500 μT ELF-MF, which are the safety standards of public and occupational exposure for 2 h/day during 10 months. At the end of the exposure period, the samples of costa were taken from the rats exposed to ELF-MF and sham. The levels of elements were measured by using atomic absorption spectrophotometry (AAS) and ultraviolet (UV) spectrophotometry. Ca levels decreased in the ELF-500 exposure group in comparison to sham group (p < 0.05). Statistically significant decrease was found in Mg levels in the ELF-500 exposure group in comparison to sham and ELF-100 exposure groups (p < 0.05). Zn levels were found to be lower in the ELF-500 exposure group than those in the sham and ELF-100 exposure groups (p < 0.05). No significant differences were determined between groups in terms of the levels of P, Cu and Fe. In conclusion, it can be maintained that long-term ELF-MF exposure can affect the chemical structure and metabolism of bone by changing the levels of some important elements such as Ca, Zn and Mg in rats.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ELF-MF:

extremely low-frequency magnetic field

ICNIRP:

International Commission on Non-Ionizing Radiation Protection

EMF:

electromagnetic field

AAS:

atomic absorption spectrophotometer

UV:

ultraviolet

AC:

alternating current

DC:

direct current

References

  1. Brodziak-Dopierala B, Kwapulinski J, Kusz D, Gajda Z, Sobczyk K (2009) Interactions between concentrations of chemical elements in human femoral heads. Arch Environ Contam Toxicol 57:203–210

    PubMed  Article  CAS  Google Scholar 

  2. Rana SVS (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22:262–284

    PubMed  Article  CAS  Google Scholar 

  3. Kuo HW, Kuo SM, Chou CH, Lee TC (2000) Determination of 14 elements in Taiwanese bones. Sci Total Environ 255:45–54

    PubMed  Article  CAS  Google Scholar 

  4. Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS (1990) Total body burdens and tissues concentration of lead, cadmium, copper, zinc and ash in 55 human cadavers. Environ Res 52:126–145

    PubMed  Article  CAS  Google Scholar 

  5. Sert C, Deniz M, Düz MZ, Aksen F, Kaya A (2002) The preventive effect on bone loss of 50-Hz, 1-mT electromagnetic field in ovariectomized rat. J Bone Miner Metab 20:345–349

    PubMed  Article  CAS  Google Scholar 

  6. Lopucki M, Czekierdowski A, Rogowska W, Kotarski J (2004) The effect of oscillating low intensity magnetic field on the Na, K, Ca, and Mg concentrations in the maternal and fetal circulation of the dually perfused human placental cotyledon. Bioelectromagnetics 25:329–337

    PubMed  Article  CAS  Google Scholar 

  7. Yavuz I, Akdag MZ, Dasdag S, Ulku SZ, Akkus Z (2008) Influences of extremely low frequency magnetic fields on mineral and trace elements content of rat teeth. Afr J Biotechnol 7:3811–3816

    CAS  Google Scholar 

  8. International Commission on Non Ionizing Radiation Protection (ICNIRP) (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522

    Google Scholar 

  9. Reeser JC, Smith DT, Fischer V, Berg R, Liu KJ, Untiedt C, Kubista M (2005) Static magnetic fields neither prevent nor diminish symptoms and signs of delayed onset muscle soreness. Arch Phys Med Rehabil 86:565–570

    PubMed  Article  Google Scholar 

  10. Akdag MZ, Dasdag S, Ketani MA, Sagsoz H (2009) Effect of extremely low frequency magnetic fields in safety standards on structure of acidophilic and basophilic cells in anterior pituitary gland of rats: an experimental study. J Int Dent Med Res 2:61–66

    Google Scholar 

  11. Ozkaya MO, Naziroglu M, Barak C, Berkkanoglu M (2010) Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitro-fertilization (IVF). Biol Trace Elem Res DOI. doi:10.1007/s12011-010-8637-x

    Google Scholar 

  12. Burchard JF, Nguyen DH, Block E (1999) Macro- and trace element concentrations in blood plasma and cerebrospinal fluid of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 20:358–364

    PubMed  Article  CAS  Google Scholar 

  13. Wrobel A, Rokita E, Karwala-Szytula M (2007) Effects of low frequency magnetic field on hard and soft tissues elemental compositions. Trace Elem Electrolytes 24:125–132

    CAS  Google Scholar 

  14. Brown SE (2010) Key nutrients for bone health-magnesium. http://www.betterbones.com/bone nutrition/magnesium.aspx, updated 14 April

  15. Odabasi E, Turan M, Aydin A, Akay C, Kutlu M (2008) Magnesium, zinc, copper, manganese, and selenium levels in postmenopausal women with osteoporosis. Can magnesium play a key role in osteoporosis? Ann Acad Med Singapore 7:547–564

    Google Scholar 

  16. Gur A, Colpan L, Nas K, Cevik R, Sarac J, Erdogan F et al (2002) The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and new effect of calcitonin. J Bone Miner Metab 20:39–43

    PubMed  Article  CAS  Google Scholar 

  17. Naziroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    PubMed  Article  CAS  Google Scholar 

  18. Akdag MZ, Dasdag S, Aksen F, Isik B, Yilmaz F (2006) Effect of ELF magnetic fields on lipid peroxidation, sperm count, p53, and trace elements. Med Sci Monit 12:BR366–BR371

    PubMed  Google Scholar 

  19. Uguz AC, Naziroglu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232:15–23

    PubMed  Article  CAS  Google Scholar 

  20. Naziroglu M, Gümral N (2009) Modulator effects of l-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 85:680–689

    PubMed  Article  CAS  Google Scholar 

  21. Gençel O, Naziroglu M, Celik O, Yalman K, Bayram D (2010) Selenium and vitamin E modulates radiation-induced liver toxicity in pregnant and nonpregnant rat: effects of colemanite and hematite shielding. Biol Trace Elem Res 135:253–263

    PubMed  Article  Google Scholar 

  22. Kayan M, Naziroglu M, Barak C (2010) Effects of vitamins C and E combination on element levels in blood of smoker and nonsmoker radiology X-ray technicians. Biol Trace Elem Res 136:140–148

    PubMed  Article  CAS  Google Scholar 

  23. Fong LY, Lau KM, Huebner K, Magee PN (1997) Induction of esophageal tumors in zinc-deficient rats by single low doses of N-nitrosomethylbenzylamine (NMBA): analysis of cell proliferation, and mutations in H-ras and p53 genes. Carcinogenesis 18:1477–1484

    PubMed  Article  CAS  Google Scholar 

  24. Prasad AS (1998) Zinc in human health: an update. J Trace Elem Exp Med 11:63–87

    Article  CAS  Google Scholar 

  25. Newberne PM, Schrager TF, Broitman S (1997) Esophageal carcinogenesis in the rat: zinc deficiency and alcohol effects on tumor induction. Pathobiology 65:39–45

    PubMed  Article  CAS  Google Scholar 

  26. Gupta A, Shukla V, Vaidya M, Roy S, Gupta A (1993) Serum and tissue trace elements in colorectal cancer. J Surg Oncol 52:172–175

    PubMed  Article  CAS  Google Scholar 

  27. Zowczak M, Iskra M, Paszkowski IJ, Maflczak M, Torliflski L, Wysocka E (2001) Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. J Trace Elem Med Biol 15:193–196

    PubMed  Article  CAS  Google Scholar 

  28. Ozbek M, Sahin I, Kanli A, Dural S, Serter R (2001) Changes in calcium, magnesium and zinc content on rat molar teeth during pregnancy. J Hacettepe Fac Dent 25:3–7

    Google Scholar 

  29. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    PubMed  Article  CAS  Google Scholar 

  30. Sarimov R, Markova E, Johansson F, Jenssen D, Belyaev I (2005) Exposure to ELF magnetic field tuned to Zn inhibits growth of cancer cells. Bioelectromagnetics 26:631–638

    PubMed  Article  CAS  Google Scholar 

  31. Belyaev IY, Alipov ED, Harms-Ringdahl M (1999) Effects of weak ELF on E. coli cells and human lymphocytes: role of genetic, physiological and physical parameters. In: Bersani F (ed) Electricity and magnetism in biology and medicine. New York, Kluwer Academic, pp 481–484

    Chapter  Google Scholar 

  32. Belyaev IY, Alipov ED (2001) Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochim Biophys Acta 1526:269–276

    PubMed  CAS  Google Scholar 

  33. Binhi VN (1997) Interference of ion quantum states within a protein explains weak magnetic field’s effect on biosystems. Electro-Magnetobiology 16:203–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Zulkuf Akdag.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ulku, R., Akdag, M.Z., Erdogan, S. et al. Extremely Low-Frequency Magnetic Field Decreased Calcium, Zinc and Magnesium Levels in Costa of Rat. Biol Trace Elem Res 143, 359–367 (2011). https://doi.org/10.1007/s12011-010-8855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8855-2

Keywords

  • Extremely low-frequency magnetic field
  • Costa
  • Elements
  • Bone