Skip to main content
Log in

Chromium and Manganese Levels in Biological Samples of Normal and Night Blindness Children of Age Groups (3–7) and (8–12) Years

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 22 December 2010

Abstract

This study was designed to compare the levels of chromium (Cr) and manganese (Mn) in scalp hair, blood, and urine of night blindness in children age ranged (3–7) and (8–12) years of both genders, comparing them to sex- and age-matched controls. A microwave-assisted wet acid digestion procedure, was developed as a sample pretreatment, for the determination of Cr and Mn in biological samples of night blindness children. The proposed method was validated by using conventional wet digestion and certified reference samples of hair, blood and urine. The digests of all biological samples were analyzed for Cr and Mn by electrothermal atomic absorption spectrometry. The results indicated significantly higher levels of Cr, whilst low level of Mn in the biological samples (blood and scalp hair) of male and female night blindness children, compared with control subjects of both genders. These data present guidance to clinicians and other professional investigating deficiency of Mn and excessive level of Cr in biological samples (scalp hair and blood) of night blindness children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christian P, West KP, Khatry SK (2001) Maternal night blindness increases risk of mortality in the first 6 months of life among infants in Nepal. J Nutr 131:1510–1512

    PubMed  CAS  Google Scholar 

  2. Brody T (1999) Nutritional biochemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  3. Whitteker P, San RH, Clark JJ, Sefrid HE, Dunkel VC (2005) Mutagenicity of chromium picolinate and its components in Salmonella typhimurium and L5178Y mouse lymphoma cells. Food Chem Toxicol 43:1619–1628

    Article  Google Scholar 

  4. Vincent JB (2003) The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Support Med 33:213–230

    Article  Google Scholar 

  5. Speetjens JK, Collins RA, Vincent JB, Woski SA (1999) The nutritional supplemented chromium(III) tris(picolinate) cleaves DNA. Chem Res Toxicol 12:483–487

    Article  PubMed  CAS  Google Scholar 

  6. Cerulli J, Grabe DW, Gauthier I et al (1998) Chromium picolinate toxicity. Ann Pharm 32:428–431

    Article  CAS  Google Scholar 

  7. Kimura K, Isashiki Y, Sonoda S et al (2000) Genetic association of manganese superoxide dismutase with exudative age-related macular degeneration. Am J Ophthalmol 130:769–773

    Article  PubMed  CAS  Google Scholar 

  8. MacMillan-Crow LA, Crow JP, Kerby JD et al (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 93:11853–11858

    Article  PubMed  CAS  Google Scholar 

  9. MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    Article  PubMed  CAS  Google Scholar 

  10. MacMillan-Crow LA, Thompson JA (1999) Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys 366:82–88

    Article  PubMed  CAS  Google Scholar 

  11. Afridi HI, Kazi TG, Kazi GH et al (2006) Essential trace and toxic element distribution in the scalp hair of pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19–34

    Article  PubMed  CAS  Google Scholar 

  12. Polkowska Z, Kozlowska K, Namiesnik J, Przyjazny A (2004) Biological fluids as a source of information on the exposure of man to environmental chemical agents. Crit Rev Anal Chem 34:105–119

    Article  CAS  Google Scholar 

  13. Rodushkin I, Odman OF, Olofsson R, Axelsson MD (2000) Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J Anal At Spectrom 15:937–944

    Article  CAS  Google Scholar 

  14. De Castro Maciel CJ, Miranda GM, De Oliveira DP et al (2003) Determination of cadmium in human urine by electrothermal atomic absorption spectrometry. Anal Chim Acta 491:231–237

    Article  Google Scholar 

  15. Khalique A, Ahmad S, Anjum T et al (2005) A comparative study based on gender and age dependence of selected metals in scalp hair. Environ Monit Assess 104:45–57

    Article  PubMed  CAS  Google Scholar 

  16. Senofonte O, Violante N, Caroli S (2000) Assessment of reference values for elements in human hair of urban schoolboys. J Trace Elem Med Biol 14:6–13

    Article  PubMed  CAS  Google Scholar 

  17. Kazi TG, Arain MB, Baig JA et al (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ 407:1019–1026

    PubMed  CAS  Google Scholar 

  18. Kazi TG, Jalbani N, Kazi N et al (2009) Estimation of toxic metals in scalp hair samples of chronic kidney patient. Biol Trace Elem Res 125:16–27

    Article  Google Scholar 

  19. Wright RO, Amarasiriwardena C, Woolf AD et al (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neuro Toxicology 27:210–216

    CAS  Google Scholar 

  20. Kimble MS (1939) The photoelectric determination of vitamin A and carotene in human plasma. J Lab Clin Med 24:1055

    CAS  Google Scholar 

  21. Afridi HI, Kazi TG, Kazi GH (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc Lett 39:203–214

    Article  CAS  Google Scholar 

  22. Kazi TG, Afridi HI, Kazi GH, Jamali MK, Arain MB, Jalbani N (2006) Evaluation of essential and toxic metals by ultrasound-assisted acid leaching from scalp hair samples of children with macular degeneration patients. Clin Chim Acta 369:52–60

    Article  PubMed  CAS  Google Scholar 

  23. VandenLangenberg GM (1998) Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the Beaver Dam Eye Study. Am J Epidemiol 148:204–214

    PubMed  CAS  Google Scholar 

  24. Schrauzer GN, Shrestha KP, Flores M (1992) Somatopsychological effects of chromium supplementation. J Nutr Environ Med 3:43–48

    Article  Google Scholar 

  25. Vincent JB (2002) Elucidating a biological role for chromium at a molecular level. Acc Chem Res 33:503–510

    Article  Google Scholar 

  26. Althuis MD, Jordan NE, Ludington EA, Wittes JT (2002) Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr 76:148–155

    PubMed  CAS  Google Scholar 

  27. American Conference of Governmental Industrial Hygienists (1999) Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati

    Google Scholar 

  28. Anderson RA, Bryden NA, Polansky MM, Gautschi K (1996) Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J Trace Elem Exp Med 9:11–25

    Article  CAS  Google Scholar 

  29. Stearns DM, Wise JP, Patierno SR, Weterhahn KE (1995) Chromium III picolinate produces chromosome damage in Chinese hamster ovary cells. Res Commun 9:1643–1648

    CAS  Google Scholar 

  30. Stearns DM, Belbruno JJ, Wetterhahn KE (1995) A prediction of chromium(III) accumulation in humans from chromium dietary supplements. FASEB J 9:1650–1657

    PubMed  CAS  Google Scholar 

  31. Sugden KD, Rogers SJ (1992) Oxygen radical-mediated DNA damage by redox-active Cr(III) complexes. Biochemistry 31:11626–11631

    Article  PubMed  CAS  Google Scholar 

  32. Shrivastava HY, Ravikumar T, Shanmugasundaram N et al (2005) Cytotoxicity studies of chromium(III) complexes on human dermal fibroblasts. Free Radic Biol Med 38:58–69

    Article  PubMed  CAS  Google Scholar 

  33. Fore H, Morton RA (1952) Manganese in Eye Tissues. Biochem J 51:603–606

    PubMed  CAS  Google Scholar 

  34. Hurley LS, Keen CL, Baly DL (1984) Manganese deficiency and toxicity: effects on carbohydrate metabolism in the rat. Neurotoxicology 5:97–104

    PubMed  CAS  Google Scholar 

  35. Wedler FC, Denman RB, Roby WG (1982) Glutamine synthetase from ovine brain is a manganous (II) enzyme. Biochemistry 21:6389–6396

    Article  PubMed  CAS  Google Scholar 

  36. Leach RM Jr (1971) Role of manganese in mucopolysaccharide metabolism. FedProc 30:991–994

    CAS  Google Scholar 

  37. Leach RM Jr, Lilburn MS (1978) Manganese metabolism and its function. World Rev Nutr Diet 32:123–134

    PubMed  CAS  Google Scholar 

  38. Bolze MS, Reeves RD, Lindbeck FE et al (1985) Influence of manganese on growth, somatomedin and glycosaminoglycan metabolism. J Nutr 115:352–358

    PubMed  CAS  Google Scholar 

  39. Gong H, Amemiya T (1996) Ultrastructure of retina of manganese-deficient rats. Ophthalmol Vis Sci 37:1967–1974

    CAS  Google Scholar 

  40. Tauber FW, Krause AC (1943) The role of iron, copper, zinc, and manganese in the metabolism of the ocular tissues, with special reference to the lens. Am J Ophthalmol 26:260–266

    CAS  Google Scholar 

  41. Friedman BJ, Freeland-Graves JH, Bales CW et al (1987) Manganese balance and clinical observations in young men fed a manganese-deficient diet. J Nutr 117:133–143

    PubMed  CAS  Google Scholar 

  42. Bell LT, Hurley LS (1973) Ultrastructural effects of manganese deficiency in liver, heart, kidney, and pancreas of mice. Lab Invest 29:723–736

    CAS  Google Scholar 

  43. Cohen AI (1992) The retina. In: Hart WM Jr (ed) Adler's physiology of the eye. Mosby Year Book, St. Louis, p 592

    Google Scholar 

  44. McCord JM, Keele BB Jr, Fridovich I (1971) An enzymebased theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci USA 68:1024–1027

    Article  PubMed  CAS  Google Scholar 

  45. Zidenberg-Cherr S, Keen CL, Lonnerdal B, Hurley LS (1983) Superoxide dismutase activity and lipid peroxidation in the rat: developmental correlations affected by manganese deficiency. J Nutr 113:2498–2504

    PubMed  CAS  Google Scholar 

  46. Paynter DI (1980) Changes in activity of the manganese superoxide dismutase enzyme in tissues of the rat with changes in dietary manganese. J Nutr 110:437–447

    PubMed  CAS  Google Scholar 

  47. Morton WE, Dunnette DA (1994) Health effects of environmental arsenic. In: Nriagu JO (ed) Arsenic in the environment: Part II. Human health and ecosystem effects. Wiley, New York, pp 17–34

    Google Scholar 

  48. Potts AM, Au PC (1976) The affinity of melanin for inorganic ions. Exp Eye Res 22:487–491

    Article  PubMed  CAS  Google Scholar 

  49. Larrson BS (1993) Interaction between chemicals and melanin. Pigment Cell Res 6:127–133

    Article  Google Scholar 

  50. Panessa BJ, Zadunaisky JA (1981) Pigment granules: a calcium reservoir in the vertebrate eye. Exp Eye Res 32:593–604

    Article  PubMed  CAS  Google Scholar 

  51. Samuelson DA, Smith P, Ulshafer FJ et al (1993) X-ray microanalysis of ocular melanin in pigs maintained in normal and low zinc diets. Exp Eye Res 56:63–70

    Article  PubMed  CAS  Google Scholar 

  52. Sarna T, Hyde JS, Swartz HM (1976) Ion exchange in melanin, an electron spin resonance study with lanthanide probes. Science 192:1132–1134

    Article  PubMed  CAS  Google Scholar 

  53. Jamall IS, Roque H (1989–1990) Cadmium-induced alterations of ocular trace elements. Influence of dietary selenium and copper. Biol Trace Elem Res 23:55–63

    Article  CAS  Google Scholar 

  54. Sarna T, Froncisz W, Hyde JC (1980) Cu2 probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy. II. Natural melanin. Arch Biochem Biophys 202:304–313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Higher Education Commission, Islamabad, Pakistan, for sponsoring this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12011-010-8927-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afridi, H.I., Kazi, T.G., Kazi, N. et al. Chromium and Manganese Levels in Biological Samples of Normal and Night Blindness Children of Age Groups (3–7) and (8–12) Years. Biol Trace Elem Res 143, 103–115 (2011). https://doi.org/10.1007/s12011-010-8851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8851-6

Keywords

Navigation