Skip to main content

Frequent Consumption of Selenium-Enriched Chicken Meat by Adults Causes Weight Loss and Maintains Their Antioxidant Status

Abstract

To assess the effects of a moderately high-protein intake on the body composition, biochemical, and antioxidant status parameters in young adults depending on either selenium- (Se) or non-enriched chicken consumption. The volunteers (n = 24) that completed the 10-week nutritional intervention were distributed in two parallel groups and randomly assigned to follow an isocaloric diet with moderately high content in protein (30% energy), either with the consumption of four 200 g portions/week of Se- or non-enriched chicken breasts. Blood samples were taken at the beginning and at the end of the study and body composition was monitored during the trial. There was a significant reduction in weight, accompanying a decrease on fat mass in both groups, while fat-free mass remained unchanged during the 10 weeks of intervention, without differences between both dietary groups. Selenium blood levels and plasma glutathione peroxidase activity, as well as lipid, glucose, and selected inflammation biomarkers remained stable during the intervention period in both dietary groups. Frequent chicken consumption, within a controlled diet with a moderately high content in protein, produced a slight but statistically significant weight reduction mainly due to the loss of fat mass. An extra Se supplementation (22 μg/day) in the Se-enriched chicken breast did not affect tachyphylactic antioxidant status of the participants neither inflammatory-related markers after weight loss.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abete I, Parra D, De Morentin BM, Alfredo Martinez J (2009) Effects of two energy-restricted diets differing in the carbohydrate/protein ratio on weight loss and oxidative changes of obese men. Int J Food Sci Nutr 60(Suppl 3):1–13

    PubMed  Article  CAS  Google Scholar 

  2. Hession M, Rolland C, Kulkarni U, Wise A, Broom J (2009) Systematic review of randomized controlled trials of low-carbohydrate vs. low-fat/low-calorie diets in the management of obesity and its comorbidities. Obes Rev 10:36–50

    PubMed  Article  CAS  Google Scholar 

  3. Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482

    PubMed  CAS  Google Scholar 

  4. Abete I, Parra D, Martinez JA (2009) Legume-, fish-, or high-protein-based hypocaloric diets: effects on weight loss and mitochondrial oxidation in obese men. J Med Food 12:100–108

    PubMed  Article  CAS  Google Scholar 

  5. Miller LE, Volpe JJ, Coleman-Kelly MD, Gwazdauskas FC, Nickols-Richardson SM (2009) Anthropometric and leptin changes in women following different dietary approaches to weight loss. Obesity (Silver Spring) 17:199–201

    Article  Google Scholar 

  6. Skov AR, Toubro S, Ronn B, Holm L, Astrup A (1999) Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Disord 23:528–536

    PubMed  Article  CAS  Google Scholar 

  7. Westerterp KR (2004) Diet induced thermogenesis. Nutr Metab (Lond) 1:5

    Article  Google Scholar 

  8. Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M (2008) Protein, weight management, and satiety. Am J Clin Nutr 87:1558S–1561S

    PubMed  CAS  Google Scholar 

  9. Yates AA (2006) Which dietary reference intake is best suited to serve as the basis for nutrition labeling for daily values? J Nutr 136:2457–2462

    PubMed  CAS  Google Scholar 

  10. Crujeiras AB, Parra D, Goyenechea E, Abete I, Martinez JA (2009) Tachyphylaxis effects on postprandial oxidative stress and mitochondrial-related gene expression in overweight subjects after a period of energy restriction. Eur J Nutr 48:341–347

    PubMed  Article  CAS  Google Scholar 

  11. Crujeiras AB, Parra D, Goyenechea E, Martinez JA (2008) Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Investig 38:672–678

    Article  CAS  Google Scholar 

  12. Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA (2010) Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition 26:534–541

    PubMed  Article  CAS  Google Scholar 

  13. Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA (2009) Dietary total antioxidant capacity: a novel indicator of diet quality in healthy young adults. J Am Coll Nutr 28:648–656

    PubMed  Google Scholar 

  14. Czernichow S, Vergnaud AC, Galan P, Arnaud J, Favier A, Faure H, Huxley R, Hercberg S, Ahluwalia N (2009) Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am J Clin Nutr 90:329–335

    PubMed  Article  CAS  Google Scholar 

  15. Galan P, Viteri FE, Bertrais S, Czernichow S, Faure H, Arnaud J, Ruffieux D, Chenal S, Arnault N, Favier A, Roussel AM, Hercberg S (2005) Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur J Clin Nutr 59:1181–1190

    PubMed  Article  CAS  Google Scholar 

  16. Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance—a mini-review. Gerontology 55:379–386

    PubMed  Article  CAS  Google Scholar 

  17. Requejo Marcos AM, Ortega Anta RM, Saavedra Vallejo P, Arrieta Blanco FJ (2006) Nutriguía: manual de nutrición clínica en atención primaria. Editorial Complutense, Madrid

    Google Scholar 

  18. Bartlett HE, Eperjesi F (2008) Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt 28:503–523

    PubMed  Article  Google Scholar 

  19. Bleys J, Navas-Acien A, Guallar E (2008) Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 168:404–410

    PubMed  Article  CAS  Google Scholar 

  20. Boosalis MG (2008) The role of selenium in chronic disease. Nutr Clin Pract 23:152–160

    PubMed  Article  Google Scholar 

  21. Alfthan G, Xu GL, Tan WH, Aro A, Wu J, Yang YX, Liang WS, Xue WL, Kong LH (2000) Selenium supplementation of children in a selenium-deficient area in China: blood selenium levels and glutathione peroxidase activities. Biol Trace Elem Res 73:113–125

    PubMed  Article  CAS  Google Scholar 

  22. Bleys J, Navas-Acien A, Stranges S, Menke A, Miller ER 3rd, Guallar E (2008) Serum selenium and serum lipids in US adults. Am J Clin Nutr 88:416–423

    PubMed  CAS  Google Scholar 

  23. Ford ES, Mokdad AH, Giles WH, Brown DW (2003) The metabolic syndrome and antioxidant concentrations: findings from the Third National Health and Nutrition Examination Survey. Diabetes 52:2346–2352

    PubMed  Article  CAS  Google Scholar 

  24. Ravn-Haren G, Bugel S, Krath BN, Hoac T, Stagsted J, Jorgensen K, Bresson JR, Larsen EH, Dragsted LO (2008) A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation. Br J Nutr 99:883–892

    PubMed  CAS  Google Scholar 

  25. Ravn-Haren G, Krath BN, Overvad K, Cold S, Moesgaard S, Larsen EH, Dragsted LO (2008) Effect of long-term selenium yeast intervention on activity and gene expression of antioxidant and xenobiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) pilot study. Br J Nutr 99:1190–1198

    PubMed  CAS  Google Scholar 

  26. Robinson MF (1989) Selenium in human nutrition in New Zealand. Nutr Rev 47:99–107

    PubMed  Article  CAS  Google Scholar 

  27. Thomson CD (2004) Selenium and iodine intakes and status in New Zealand and Australia. Br J Nutr 91:661–672

    PubMed  Article  CAS  Google Scholar 

  28. Thomson CD, Robinson MF, Butler JA, Whanger PD (1993) Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase (EC 1.11.1.9) in blood components of New Zealand women. Br J Nutr 69:577–588

    PubMed  Article  CAS  Google Scholar 

  29. Hermsdorff HH, Zulet MA, Puchau B, Bressan J, Martinez JA (2009) Association of retinol-binding protein-4 with dietary selenium intake and other lifestyle features in young healthy women. Nutrition 25:392–399

    PubMed  Article  CAS  Google Scholar 

  30. Puchau B, Zulet MA, Gonzalez de Echavarri A, Navarro-Blasco I, Martinez JA (2009) Selenium intake reduces serum C3, an early marker of metabolic syndrome manifestations, in healthy young adults. Eur J Clin Nutr 63:858–864

    PubMed  Article  CAS  Google Scholar 

  31. Zulet MA, Puchau B, Hermsdorff HH, Navarro C, Martinez JA (2009) Dietary selenium intake is negatively associated with serum sialic acid and metabolic syndrome features in healthy young adults. Nutr Res 29:41–48

    PubMed  Article  CAS  Google Scholar 

  32. Bekaert B, Cooper ML, Green FR, McNulty H, Pentieva K, Scott JM, Molloy AM, Rayman MP (2008) Effect of selenium status and supplementation with high-selenium yeast on plasma homocysteine and B vitamin concentrations in the UK elderly. Mol Nutr Food Res 52:1324–1333

    PubMed  Article  CAS  Google Scholar 

  33. Hawkes WC, Keim NL, Diane Richter B, Gustafson MB, Gale B, Mackey BE, Bonnel EL (2008) High-selenium yeast supplementation in free-living North American men: no effect on thyroid hormone metabolism or body composition. J Trace Elem Med Biol 22:131–142

    PubMed  Article  CAS  Google Scholar 

  34. Bleys J, Navas-Acien A, Laclaustra M, Pastor-Barriuso R, Menke A, Ordovas J, Stranges S, Guallar E (2009) Serum selenium and peripheral arterial disease: results from the national health and nutrition examination survey, 2003–2004. Am J Epidemiol 169:996–1003

    PubMed  Article  Google Scholar 

  35. Moher D, Schulz KF, Altman D (2005) The CONSORT Statement: revised recommendations for improving the quality of reports of parallel-group randomized trials 2001. Explore (NY) 1:40–45

    Article  Google Scholar 

  36. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  37. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    PubMed  Article  CAS  Google Scholar 

  38. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D, Griel A, Psota T, Kris-Etherton P (2009) A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults. J Nutr 139:514–521

    PubMed  Article  CAS  Google Scholar 

  39. Melanson K, Gootman J, Myrdal A, Kline G, Rippe JM (2003) Weight loss and total lipid profile changes in overweight women consuming beef or chicken as the primary protein source. Nutrition 19:409–414

    PubMed  Article  CAS  Google Scholar 

  40. Mahon AK, Flynn MG, Stewart LK, McFarlin BK, Iglay HB, Mattes RD, Lyle RM, Considine RV, Campbell WW (2007) Protein intake during energy restriction: effects on body composition and markers of metabolic and cardiovascular health in postmenopausal women. J Am Coll Nutr 26:182–189

    PubMed  CAS  Google Scholar 

  41. Lutsey PL, Steffen LM, Feldman HA, Hoelscher DH, Webber LS, Luepker RV, Lytle LA, Zive M, Osganian SK (2006) Serum homocysteine is related to food intake in adolescents: the Child and Adolescent Trial for Cardiovascular Health. Am J Clin Nutr 83:1380–1386

    PubMed  CAS  Google Scholar 

  42. Konstantinova SV, Vollset SE, Berstad P, Ueland PM, Drevon CA, Refsum H, Tell GS (2007) Dietary predictors of plasma total homocysteine in the Hordaland Homocysteine Study. Br J Nutr 98:201–210

    PubMed  Article  CAS  Google Scholar 

  43. Moser PB, Reynolds RD, Acharya S, Howard MP, Andon MB, Lewis SA (1988) Copper, iron, zinc, and selenium dietary intake and status of Nepalese lactating women and their breast-fed infants. Am J Clin Nutr 47:729–734

    PubMed  CAS  Google Scholar 

  44. Alfthan G, Aro A, Arvilommi H, Huttunen JK (1991) Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenate. Am J Clin Nutr 53:120–125

    PubMed  CAS  Google Scholar 

  45. Strunz CC, Oliveira TV, Vinagre JC, Lima A, Cozzolino S, Maranhao RC (2008) Brazil nut ingestion increased plasma selenium but had minimal effects on lipids, apolipoproteins, and high-density lipoprotein function in human subjects. Nutr Res 28:151–155

    PubMed  Article  CAS  Google Scholar 

  46. Lymbury R, Tinggi U, Griffiths L, Rosenfeldt F, Perkins AV (2008) Selenium status of the Australian population: effect of age, gender and cardiovascular disease. Biol Trace Elem Res 126(Suppl 1):S1–S10

    PubMed  Article  CAS  Google Scholar 

  47. Brehm BJ, D’Alessio DA (2008) Benefits of high-protein weight loss diets: enough evidence for practice? Curr Opin Endocrinol Diabetes Obes 15:416–421

    PubMed  Article  CAS  Google Scholar 

  48. Crujeiras AB, Parra D, Abete I, Martinez JA (2007) A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic Res 41:498–506

    PubMed  Article  CAS  Google Scholar 

  49. Crujeiras AB, Parra MD, Rodriguez MC, Martinez de Morentin BE, Martinez JA (2006) A role for fruit content in energy-restricted diets in improving antioxidant status in obese women during weight loss. Nutrition 22:593–599

    PubMed  Article  CAS  Google Scholar 

  50. Czernichow S, Couthouis A, Bertrais S, Vergnaud AC, Dauchet L, Galan P, Hercberg S (2006) Antioxidant supplementation does not affect fasting plasma glucose in the Supplementation with Antioxidant Vitamins and Minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. Am J Clin Nutr 84:395–399

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out with funding from EUROINNOVA-Navarra project, granted by the Navarra Government and UVESA (Navarra, Spain). Chicken breasts were provided by UVESA (Navarra, Spain). The authors, who are grateful to the volunteers, declare no other interests. Helen HM Hermsdorff, Veronica Ciaurriz, and Vanessa Fernandez are credited for laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alfredo Martínez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Navas-Carretero, S., Cuervo, M., Abete, I. et al. Frequent Consumption of Selenium-Enriched Chicken Meat by Adults Causes Weight Loss and Maintains Their Antioxidant Status. Biol Trace Elem Res 143, 8–19 (2011). https://doi.org/10.1007/s12011-010-8831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8831-x

Keywords

  • Moderately high-protein intake
  • Body composition
  • Selenium
  • Antioxidant status
  • Tachyphylaxis
  • Glutathione peroxidase