Skip to main content

Advertisement

Log in

The Effects of Vanadium (V) Absorbed by Coprinus comatus on Bone in Streptozotocin-induced Diabetic Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effects of vanadium absorbed by Coprinus comatus (VACC) treatment on bone in streptozotocin (STZ)-induced diabetic rats. Forty-five Wistar female rats used were divided into three groups: (1) normal rats (control), (2) diabetic rats, and (3) diabetic rats treated with VACC. Normal and diabetic rats were given physiological saline, and VACC-treated rats were administered VACC intragastrically at doses of 0.18 mg vanadium/kg body weight once daily. Treatments were performed over a 12-week period. At sacrifice, one tibia and one femur were removed, subjected to micro computed tomography (micro-CT) for determination of trabecular bone structure, and then processed for histomorphometry to assess bone turnover. Another femoral was used for mechanical testing. In addition, bone samples were collected to evaluate the content of mineral substances in bones. Treatment with VACC increased trabecular bone volume fraction in diabetic rats. Vanadium-treated animals had significant increases in ultimate load, trabecular thickness, and osteoblast surface. However, vanadium treatment did not seem to affect bone stiffness, bone energy absorption, trabecular separation, and osteoclast number. P levels in the femurs of diabetic rats treated with VACC were significantly higher than those of diabetic animals. Ca levels in diabetic and diabetic rats treated with vanadium showed no obvious changes. In conclusion, our results provide an important proof of concept that VACC may represent a powerful approach to treating or reversing diabetic osteopathy in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tripathi BK, Srivastava AK (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit 12(7):RA130–RA147

    PubMed  CAS  Google Scholar 

  2. Goodman WG, Hori MT (1984) Diminished bone formation in experimental diabetes. Relationship to osteoid maturation and mineralization. Diabetes 33:825–831

    Article  PubMed  CAS  Google Scholar 

  3. Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14(6):429–435

    Article  PubMed  Google Scholar 

  4. Macey LR, Kana SM, Jingushi S, Terek RM, Borretos J, Bolander ME (1989) Defects of early fracture-healing in experimental diabetes. J Bone Jt Surg Am 71:722–733

    CAS  Google Scholar 

  5. Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937

    Article  PubMed  CAS  Google Scholar 

  6. Levin ME, Boisseau VC, Avioli LV (1976) Effects of diabetes mellitus on bone mass in juvenile and adult onset diabetics. N Engl J Med 294:241–245

    Article  PubMed  CAS  Google Scholar 

  7. McNair P, Madsbad C, Christiansen C, Faber OK, Transbol I, Binder C (1978) Osteopenia of insulin treated diabetes mellitus: its relation to age of onset, sex and duration of disease. Diabetologia 15:87–93

    Article  PubMed  CAS  Google Scholar 

  8. Rosenbloom AL, Lezotte DC, Weber T, Gudat J, Heller DR, Weber ML, Klein S, Kennedy BB (1977) Diminution of bone mass in childhood diabetes. Diabetes 26:1052–1055

    Article  PubMed  CAS  Google Scholar 

  9. Santiago JV, McAlister WH, Ratzan SK, Bussman Y, Haymond MW, Shackelford G, Weldon VV (1977) Decreased cortical thickness and osteopenia in children with diabetes mellitus. Clin Endocrinol Metab 43:845–848

    Google Scholar 

  10. Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28:21–28

    Article  PubMed  CAS  Google Scholar 

  11. Verhaeghe J, Suiker AM, Einhorn TA, Geusens P, Visser WJ, Van Herck E, Van Bree R, Magitsky S, Bouillon R (1994) Brittle bones in spontaneously diabetic female rats cannot be predicted by bone mineral measurements: studies in diabetic and ovariectomized rats. J Bone Miner Res 9:1657–1667

    Article  PubMed  CAS  Google Scholar 

  12. Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 28:1297–1310

    Article  PubMed  CAS  Google Scholar 

  13. Srivastava AK (2000) Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem 206:177–182

    Article  PubMed  CAS  Google Scholar 

  14. Tsiani E, Fantus IG (1997) Vanadium compounds. Biological actions and potential as pharmaocological agents. Trends Endocrinol Metabol 8:51–58

    Article  CAS  Google Scholar 

  15. Shechter Y (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 39:1–5

    Article  PubMed  CAS  Google Scholar 

  16. Domingo JL (2002) Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res 88:97–112

    Article  PubMed  CAS  Google Scholar 

  17. McNeill JH, Yuen VG, Hoveyda HR (1992) Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J Med Chem35(8): 1489–1491

    Google Scholar 

  18. Sakurai H, Fujii K, Watanabe H (1995) Orally active and long-term acting insulin-mimetic vanadyl complex: bis (picolinato) oxovanadium (IV). Biochem Biophys Res Commun 214:1095–1101

    Article  PubMed  CAS  Google Scholar 

  19. Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR (1989) Evaluation of traditional plant treatments for diabetes: studies in streptozotocin diabetic mice. Acra Diaberologiu Larinu 26:51–55

    CAS  Google Scholar 

  20. Kiho T, Tsujimura Y, Sakushima M, Usui S, Ukai S (1994) Polysaccharides in fungi: XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugaku Zasshi 114:308–315, in Japanese

    PubMed  CAS  Google Scholar 

  21. Kiho T, Sobue S, Ukai S (1994) Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of Agrocybe cylindracea. Carbohydr Res 251:81–87

    Article  PubMed  CAS  Google Scholar 

  22. Kalac P, Niznamska M, Bevilaqua D, Staskova I (1996) Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Sci Total Environ 177:251–258

    Article  PubMed  CAS  Google Scholar 

  23. Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  CAS  Google Scholar 

  24. Han C, Yuan J, Wang Y (2006) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol 20(3):191–196

    Article  PubMed  CAS  Google Scholar 

  25. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37:1313–1320

    Article  PubMed  CAS  Google Scholar 

  26. Goto A, Tsukamoto I (2003) Increase in tartrate-resistant acid phosphatase of bone at the early stage of ascorbic acid deficiency in the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat. Calcif Tissue Int 73:180–185

    Article  PubMed  CAS  Google Scholar 

  27. Lu B, Ennis D, Lai R, Bogdanovic E (2001) Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). J Biol Chem 276:35589–35598

    Article  PubMed  CAS  Google Scholar 

  28. Semiz S, Orvig C, McNeill JH (2002) Effects of diabetes, vanadium, and insulin on glycogen synthase activation in Wistar rats. Mol Cell Biochem 231:23–35

    Article  PubMed  CAS  Google Scholar 

  29. Goldfine AB, Simonson DC, Folli F (1995) In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 153:217–231

    Article  PubMed  CAS  Google Scholar 

  30. Forst T, Pfutzner A, Kann P, Schehler B, Lobmann R, Schafer H, Andreas J, Bockisch A, Beyer J (1995) Peripheral osteopenia in adult patients with insulin-dependent diabetes mellitus. Diabetes Med 12:874–879

    Article  CAS  Google Scholar 

  31. Buysschaert M, Cauwe F, Jamart J, Brichant C, De Coster P, Magnan A, Donckier J (1992) Proximal femur density in type 1 and 2 diabetic patients. Diabetes Metab 18:32–37

    CAS  Google Scholar 

  32. Hui SL, Epstein S, Johnston CC Jr (1985) A prospective study of bone mass in patients with type I diabetes. J Clin Endocrinol Metab 60:74–80

    Article  PubMed  CAS  Google Scholar 

  33. Miazgowski T, Czekalski S (1998) A 2-year follow-up study on bone mineral density and markers of bone turnover in patients with long-standing insulin-dependent diabetes mellitus. Osteoporos Int 8:399–403

    Article  PubMed  CAS  Google Scholar 

  34. Olmos JM, Perez-Castrillon JL, Garcia MT, Garrido JC, Amado JA, Gonzalez-Macias J (1994) Bone densitometry and biochemical bone remodeling markers in type 1 diabetes mellitus. Bone Miner 26:1–8

    Article  PubMed  CAS  Google Scholar 

  35. Poucheret P, Verma S, Grynpas MD, McNeill JH (1998) Vanadium and diabetes. Mol Cell Biochem 188:73–80

    Article  PubMed  CAS  Google Scholar 

  36. Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD (2006) The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 38:368–377

    Article  PubMed  CAS  Google Scholar 

  37. Verhaeghe J, van Herck E, Visser WJ, Suiker AM, Thomasset M, Einhorn TA, Faierman E, Bouillon R (1990) Bone and mineral metabolism in BB rats with longterm diabetes. Decreased bone turnover and osteoporosis. Diabetes 39:477–482

    Article  PubMed  CAS  Google Scholar 

  38. Einhorn TA, Boskey AL, Gundberg CM, Vigorita VJ, Devlin VJ, Beyer MM (1988) The mineral and mechanical properties of bone in chronic experimental diabetes. J Orthop Res 6:317–323

    Article  PubMed  CAS  Google Scholar 

  39. Hou JC, Zernicke RF, Barnard RJ (1991) Experimental diabetes, insulin treatment, and femoral neck morphology and biomechanics in rats. Clin Orthop Relat Res 264:278–285

    PubMed  Google Scholar 

  40. Pothuaud L, Rietbergen BV, Mosekilde L et al (2002) Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. Bone 35:1091–1099

    Google Scholar 

  41. Ulrich D, Rietbergen BV, Laib A, Rüegsegger P (1999) The ability of three-dimensional structure indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60

    Article  PubMed  CAS  Google Scholar 

  42. Bain S, Ramamurthy NS, Impeduglia T, Scolman S, Golub LM (1997) Tetracycline prevents cancellous bone loss and maintains near-normal rates of bone formation in streptozotocin diabetic rats. Bone 21:147–153

    Article  PubMed  CAS  Google Scholar 

  43. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320

    Article  PubMed  CAS  Google Scholar 

  44. Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495

    PubMed  CAS  Google Scholar 

  45. Fukui K, Fujisawa Y, OhyaNishiguchi H, Kamada H, Sakurai H (1999) In vivo coordination structural changes of a potent insulin-mimetic agent, bis(picolinato)oxovanadium(IV), studied by electron spin–echo envelope modulation spectroscopy. J Inorg Biochem 77:215–224

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, Y., Fu, Q. The Effects of Vanadium (V) Absorbed by Coprinus comatus on Bone in Streptozotocin-induced Diabetic Rats. Biol Trace Elem Res 142, 748–759 (2011). https://doi.org/10.1007/s12011-010-8825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8825-8

Keywords

Navigation