Skip to main content
Log in

Chromium (VI) Can Activate and Impair Antioxidant Defense System

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The changes in glutathione-dependent cycle enzymes and catalase activities under Cr(VI)-induced oxidative stress were investigated in two distinct cell lines: L-41−human epithelial-like cells and HLF−fetal human diploid lung fibroblasts, which differ in tissue origin, proliferation, and antioxidant enzymes activities. The chromium concentrations from 1 to 5 μM cause nontoxic effects and activate antioxidant enzymes to overcome oxidative stress. In spite of some differences in the endogenous antioxidant activities, both cell lines reveal the same range of toxic concentrations (20–30 μM). The irreversible inhibition of glutathione-dependent antioxidant enzymes develops under toxic concentrations and serves as a marker of toxicity. The endogenous antioxidant activity influences time-dependent expression of Cr(VI) toxicity and the dynamics of antioxidant enzymes activity under nontoxic conditions. The cell antioxidant defense system is an important marker of the cell adaptive capacity under nontoxic and toxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valko M, Leibfritz D, Mongol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  2. Mates JM, Segura JA, Alonso FJ, Marquez J (2008) Intracellular redox status and oxidative stress: implications for cell proliferative, apoptosis, and carcinogenesis. Arch Toxicol 82:273–299

    Article  PubMed  CAS  Google Scholar 

  3. Korkina L, Pastore S (2009) The role of redox regulation in the normal physiology and inflammatory diseases of skin. Front Biosci 1:123–141

    Google Scholar 

  4. Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Rad Biol Med 37:1921–1942

    Article  PubMed  CAS  Google Scholar 

  5. Genestra M (2007) Oxyl-radicals, redox-sensitive signalling cascades and antioxidants. Cellul Signal 19:1807–1819

    Article  CAS  Google Scholar 

  6. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  7. Pljesa-Ercegovac M, Mimic-Oka J, Dragicevic D, Savic-Radojevic A, Opacic M, Pljesa S, Radosavljevic R, Simic T (2008) Altered antioxidant capacity in human renal cell carcinoma: role of glutathione associated enzymes. Urol Oncol 26:175–181

    Article  PubMed  CAS  Google Scholar 

  8. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Rad Biol Med 46:443–453

    Article  PubMed  CAS  Google Scholar 

  9. Halliwell B, Gutteridge JMC (1999) Antioxidant defences. In: Halliwell B, Gutteridge JMC (eds) Free radicals in Biology and Medicine, 3rd edn. Clarendon Press, Oxford, pp 105–245

    Google Scholar 

  10. Li S, Yan T, Yang J-Q, Oberley TD, Oberley LW (2000) The role of cellular glutathione redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res 60:3927–3939

    PubMed  CAS  Google Scholar 

  11. Perez-Pertejo Y, Requera RM, Ordonez D, Balana-Fouce R (2008) Alterations in the glutathione-redox balance induced by the bio-insecticide Spinosad in CHO-K1 and Vero cells. Ecotoxicol Environ Safety 70:251–258

    Article  PubMed  CAS  Google Scholar 

  12. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  13. Yang MS, Chan HW, Yu LC (2006) Glutathione peroxidase and glutathione reductase activities are partially responsible for determining the susceptibility of cells to oxidative stress. Toxicology 226:126–130

    Article  PubMed  CAS  Google Scholar 

  14. Trzeciak A, Kowalik J, Malecka-Panas E, Drzewoski J, Wojewodzka M, Iwanenko T, Blasiak J (2000) Genotoxicity of chromium in human gastric mucosa cells and peripheral blood lymphocytes evaluated by single cell gel electrophoresis (comet assay). Med Sci Monit 6:24–29

    PubMed  CAS  Google Scholar 

  15. Bagchi D, Bagchi M, Stohs SJ (2001) Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem 222:149–158

    Article  PubMed  CAS  Google Scholar 

  16. Gunarantnam M, Grant MH (2004) Damage to F-actin and cell death induced by chromium VI and nickel in primary monolayer cultures of rat hepatocytes. Toxicol in Vitro 18:245–253

    Article  Google Scholar 

  17. Lalaouni A, Henderson C, Kupper C, Grant MH (2007) The interaction of chromium (VI) with macrophages: depletion of glutathione and inhibition of glutathione reductase. Toxicology 236:76–81

    Article  PubMed  CAS  Google Scholar 

  18. Raghunathan VK, Ellis EM, Grant MH (2009) Response to chronic exposure to hexavalent chromium in human monocytes. Toxicol in Vitro 23:647–652

    Article  PubMed  CAS  Google Scholar 

  19. Osgood EE, Brooke JH (1955) Continuous tissue culture of leukocytes from human leukemic bloods by application of “gradient” principles. Blood 10:1010–1022

    PubMed  CAS  Google Scholar 

  20. Solov’ev VD, Gulevich NE (1960) A study of virus resistance using cell culture models: isolation of continuous cell line resistant to poliomyelitis virus. Acta Virol 4:220–226 (in Russian)

    Google Scholar 

  21. Carmichael J, DeGraff W, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of radiosensitivity. Cancer Res 47:936–942

    PubMed  CAS  Google Scholar 

  22. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  23. Hutter DE, Till BC, Greene JJ (1997) Redox state changes in density dependent regulation of proliferation. Exp Cell Res 232:435–438

    Article  PubMed  CAS  Google Scholar 

  24. Pani G, Colaviti R, Bedogni B, Anzevino R, Borrello S, Galeotti T (2000) A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem 275:38891–38899

    Article  PubMed  CAS  Google Scholar 

  25. Giannoni E, Buricchi F, Grimaldi G, Parri M, Cialdai F, Taddei M, Raugei G, Ramponi G, Chiarugi P (2008) Redox-regulation of anоikis: reactive oxygen species as essential mediators of cell survival. Cell Death Differ 15:867–878

    Article  PubMed  CAS  Google Scholar 

  26. Sapojnikova N, Kartvelishvili T, Abuladze M, Asatiani N (2007) How a cell defense itself against genomic instability caused by chromium. In: Gloscow EJ (ed) New research on genomic instability. NOVA SCIENCE, New York, pp 207–260

    Google Scholar 

  27. Haddad JJE, Oliver RE, Land SC (2000) Antioxidant/Pro-oxidant equilibrium regulates HIF-1a and NF-kB redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J Biol Chem 275:21130–21139

    Article  PubMed  CAS  Google Scholar 

  28. Abuladze M, Asatiani N, Kartvelishvili T, Kulikova N, Sapojnikova N (2008) The comparison of chromium mediated cell responses in two different human cell lines. In: Collery P, Maymard I, Theophanides T, Khassanova L, Collery T (eds) Metals ions in biology and medicine. John Libbey Eurotext, Paris, pp 347–352

    Google Scholar 

  29. Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB (2009) Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol 24:66–73

    Article  PubMed  CAS  Google Scholar 

  30. Imamoglu N, Yerer MB, Donmez-Altuntas H, Saraymen R (2008) Erythrocyte antioxidant enzyme activities and lipid peroxidation in the erythrocyte membrane of stainless-steel welders exposed to welding fumes and gases. Int J Hyg Environ Health 211:63–68

    Article  PubMed  CAS  Google Scholar 

  31. Thijssen S, Cuypers A, Maringwa J, Smeets K, Horemans N, Lambrichts I, van Kerkhove E (2007) Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 236:29–41

    Article  PubMed  CAS  Google Scholar 

  32. Pedraza-Chaverrí J, Barrera D, Medina-Campos ON, Carvajal RC, Hernández-Pando R, Macías-Ruvalcaba NA, Maldonado PD, Salcedo MI, Tapia E, Saldívar L, Castilla ME, Ibarra-Rubio ME (2005) Time course study of oxidative and nitrosative stress and antioxidant enzymes in K2Cr2O7-induced nephrotoxicity. BMC Nephrol 6:4

    Article  PubMed  Google Scholar 

  33. Acharya UR, Mishra M, Tripathy RR, Mishra I (2006) Testicular dysfunction and antioxidative defense system of Swiss mice after chromic acid exposure. Reprod Toxicol 22:87–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. M. Iobadze (Institute of Medical Biotechnology, Tbilisi, Georgia) for her kind gift of L-41 cell line and Prof. Len W. Poulter (Department of Immunology, UCL, London, UK) for his kind gift of HLF cell line. This study was supported by G-349 Grant awarded by the International Science and Technology Center (ISTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Sapojnikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asatiani, N., Kartvelishvili, T., Abuladze, M. et al. Chromium (VI) Can Activate and Impair Antioxidant Defense System. Biol Trace Elem Res 142, 388–397 (2011). https://doi.org/10.1007/s12011-010-8806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8806-y

Keywords

Navigation