Skip to main content
Log in

Improvement of Cerium of Photosynthesis Functions of Maize Under Magnesium Deficiency

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rare earth elements can promote photosynthesis, but their mechanisms are still poorly understood under magnesium deficiency. The present study was designed to determine the role of cerium in magnesium-deficient maize plants. Maize was cultivated in Hoagland’s solution added with cerium with and without adequate quantities of magnesium. Under magnesium-deficient conditions, cerium can prevents inhibition of synthesis of photosynthetic pigment, improves light energy absorption and conversion, oxygen evolution, and the activity of photo-phosphorelation and its coupling factor Ca2+-ATPase. These results suggest that cerium could partly substitute magnesium, improving photosynthesis and plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buchanan BB, Gruissem W, Johones RL (2002) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Science Press, Beijing, pp 568–628

    Google Scholar 

  2. Wu WH (2003) Plant physiology (in Chinese). Science Press, Beijing, 93:105–108, 134–135.

  3. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  PubMed  CAS  Google Scholar 

  4. Briskin DP, Pooler J (1983) Role of magnesium in plasma membrane ATPase of red beet. Plant Physiol 71:969–971

    Article  PubMed  CAS  Google Scholar 

  5. Fisher ES, Bream EE (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. Physiol Planta 89:271–276

    Article  Google Scholar 

  6. Cakma KI (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45(278):1259–1266

    Article  Google Scholar 

  7. Cakma KI, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  Google Scholar 

  8. Cakma KI, Hengeler C, Marschner H (1994) Changes in phloem export of sucrose in leaves in response to phosphorous, potassium and magnesium deficiency in bean plant. J Exp Bot 45:1251–1257

    Article  Google Scholar 

  9. Hong FS, Wei ZG, Zhao GW (2002) Mechanism of lanthanum effect on the chlorophyll of spinach. Sci China Ser C 45(2):166–176

    Article  CAS  Google Scholar 

  10. Hong FS, Wang L, Meng XX, Wei Z, Zhao GW (2002) The effect of cerium on the chlorophyll formation of spinach. Biol Trace Elem Res 89:263–277

    Article  CAS  Google Scholar 

  11. Hong FS, Wang XF, Liu C, Su GX, Song WP, Wu K, Tao Y, Zhao GW (2003) Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach. Sci China B 46(1):42–50

    CAS  Google Scholar 

  12. Hong FS, Liu C, Zheng L, Wang XF, Wu K, Song WP, SP LV, Tao Y, Zhao GW (2005) Formation of complexes of rubisco–rubisco activase from La3+, Ce3+ treatment spinach. Sci China B 48(1):67–74

    CAS  Google Scholar 

  13. Liu C, Hong FS, Wu K, Ma HB, Zhang XG, Hong CJ, Wu C, Gao FQ, Yang F, Liu T, Xu JH, Xie YN, Li ZR (2006) Effects of Nd3+ ion on carboxylation activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase of spinach. Biochem Biophys Res Commun 342(1):36–43

    Article  PubMed  CAS  Google Scholar 

  14. Ze YG, Yin ST, Ji Z, Luo LY, Liu C, Hong FS (2009) Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts. Biometals 22:941–949

    Article  PubMed  CAS  Google Scholar 

  15. Ze YG, Zhou M, Luo LY, Ji Z, Hong FS (2009) Effects of cerium on key enzymes of carbon assimilation of spinach under magnesium deficiency. Biol Trace Elem Res 130(2):162–171

    Article  Google Scholar 

  16. Yin ST, Liu C, Zhou M, Liu J, Ma LL, Duan YM, Li N, Hong FS (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132(1–3):247–258

    Article  PubMed  CAS  Google Scholar 

  17. Meider H (1984) Class experiments in plant physiology. Allen and Unwin, London, pp 72–74

    Google Scholar 

  18. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta nmlgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  19. Allen JF, Holmes NG (1986) Electron transport and redox titration. In: Hipkins MF, Baker NR (eds) Photosynthesis, energy transduction: a practical approach. IRL Press, Oxford, pp 103–141

    Google Scholar 

  20. Allnutt FC, Ewy RG, Renganathan M, Pan RS, Dilley RA (1991) Nigericin and hexylamine effects on localized proton gradients in thylakoid. Biochem Biophys Acta 1059:28–36

    Article  CAS  Google Scholar 

  21. Li SJ, Cai JP, Wan GQ, Wang MQ, Zhao HY (1978) Studies on structure and function of chloroplasts II isolation and interchangeability of pure coupling factors. Acta Bot Sin 20(2):103–107

    Google Scholar 

  22. Shi XB, Wei JM, Shen YK (2001) Effects of sequential deletions of residues from the N- or C-terminus on the function of subunit of the chloroplast ATP synthase. Biochem 40:10825–10831

    Article  CAS  Google Scholar 

  23. Polle A, Otter T, Mehne-Jakobs B (1994) Effect of magnesium-deficiency on antioxidative systems in needles of Norway spruce (Picea abies (L.) Karst.) grown with different ratios of nitrate and ammonium as nitrogen sources. New Phytol 128:621–628

    Article  CAS  Google Scholar 

  24. Anza M, Riga P (2001) Effect of magnesium deficiency in antioxidant enzymes from pepper plants (Capsicum annuum L.). Acta Hortic 559:365–370

    CAS  Google Scholar 

  25. Chu ZX, Mu MH, Shao HX (1994) Influences of Ce on the formation of chlorophyll-protein complexes in chloroplasts of cucumber leaves. Acta Botanic Sinica 36(10):785–789

    CAS  Google Scholar 

  26. Li YS (1975) Salts and chloroplast fluorescence. Biochim Biophys Acta 376:180–188

    Article  PubMed  CAS  Google Scholar 

  27. Malkin S, Siderer Y (1974) The effect of salt concentration on the fluorescence parameters of isolated chloroplasts. Biochim Biophys Acta 368:422–431

    Article  PubMed  CAS  Google Scholar 

  28. Kuang TY (ed) (2003) Mechanism and regulation of primary energy conversion process in photosynthesis (in Chinese). Science and Technology Press of Jiangsu, Nanjing: 22–68.

  29. Murata N (1969) Control of excitation transfer in photosynthesis II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. J Biochim Biophys Acta 189:171–181

    Article  CAS  Google Scholar 

  30. Rurainski HJ, Mader G (1977) Regulation of the hill reaction by cation and its abolishment by uncouplers. Biochim Biophys Acta 461:489–499

    Article  PubMed  CAS  Google Scholar 

  31. Ames BN (1966) Assay of inorganic phosphate, Pi total phosphate and phosphatases. In: Colowick SP, Kaplan NO (eds) Methods in enzymol, vol 8. Academic, New York, p 115

    Google Scholar 

  32. Liu C, Hong FS, Wang L, Zheng L (2004) The effect of Nd3+ on photosynthesis of spinach. J Rare Earths 22(2):306–310

    CAS  Google Scholar 

  33. Liu XQ, Su MY, Liu C, Si WH, Hong FS (2007) Effects of 4 f electron characteristic and alteration valence of rare earths on photosynthesis: regulating distribution of energy and activities of spinach chloroplast. J Rare Earths 25:495–501

    Article  Google Scholar 

  34. Liu XQ, Su MY, Liu C, Si WH, Zhang L, Hong FS (2007) Effects of cerium on energy transfer and oxygen evolution in spinach photosystem II. J Rare Earths 25:624–630

    Article  Google Scholar 

  35. Ni JZ (2002) Rare earths bioinorganic chemistry. Science Press, Beijing, pp 8–343

    Google Scholar 

  36. Lavon R, Goldshmidt EE, Salomon R (1995) Effect of potassium, magnesium and calcium deficiencies on carbohydrate pools and metabolism in citrus leaves. J Am Soc Hortic Sci 120(1):54–58

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30800068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fashui Hong.

Additional information

Min Zhou, Xiaolan Gong, and Ying Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Gong, X., Wang, Y. et al. Improvement of Cerium of Photosynthesis Functions of Maize Under Magnesium Deficiency. Biol Trace Elem Res 142, 760–772 (2011). https://doi.org/10.1007/s12011-010-8769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8769-z

Keywords

Navigation