Skip to main content
Log in

Influence of Therapy with Metformin on the Concentration of Certain Divalent Cations in Patients with Non-insulin-Dependent Diabetes Mellitus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Research was performed on a group of 30 patients with non-insulin-dependent diabetes mellitus (NIDDM), who never received antidiabetic medication before, and on a group of 17 healthy adults. The patients were administered treatment with metformin, 1,000 mg/day. Plasmatic and urinary concentration of magnesium have been measured, copper and zinc along with the concentrations of glucose, HDL, LDL, cholesterol, tryglicerides, HbA1c, and total erythrocyte magnesium, in advance and after 3 months of treatment. Data showed significant differences in the NIDDM group vs the control group: for plasma magnesium—1.95 ± 0.19 vs 2.20 ± 0.18 mg/dl, p < 0.001; urine magnesium—237.28 ± 34.51 vs 126.25 ± 38.22 mg/24 h, p < 0.001; erythrocyte magnesium—5.09 ± 0.63 vs 6.38 ± 0.75 mg/dl, p < 0.001; plasma zinc—67.56 ± 6.21 vs 98.41 ± 20.47 μg/dl, p < 0.001; urine zinc—1,347.54 ± 158.24 vs 851.65 ± 209.75 μg/24 h, p < 0.001; plasma copper—111.91 ± 20.98 vs 96.33 ± 8.56 μg/dl, p < 0.001; and urine copper—51.70 ± 23.79 vs 36.00 ± 11.70 μg/24 h, p < 0.05. Treatment with metformin for 3 months modified significant erythrocyte magnesium—5.75 ± 0.61 vs 5.09 ± 0.63 mg/dl, p < 0.001 and urine magnesium—198.27 ± 27.07 vs 237.28 ± 34.51 mg/24 h, p < 0.001, whereas it did not modify significant the plasmatic and urinary concentration of the other cations. The erythrocyte magnesium concentration was inversely correlated with HbA1c (r = −0.438, p = 0.015). The plasma level of copper was positively correlated with HbA1c (r = 0.517, p < 0.003), tryglicerides (r = 0.534, p < 0.003), and cholesterol (r = 0.440, p < 0.05), and the plasma level of zinc was inversely correlated with glycemia (r = −0.399, p = 0.029). Our data show a significant action of metformin therapy, by increasing the total intraerythrocyte magnesium concentration and decreasing the urinary magnesium elimination, positively correlated with the decrease of glycemia and HbA1c in NIDDM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prasad AS (1998) Zinc in human health: an update. J Trace Elem Exp Med 11:63–87

    Article  CAS  Google Scholar 

  2. Saris NE, Mervaala E, Karippanem H, Khawaya JA, Lewenstam A (2000) Magnesium. An update on physiological clinical and analytical aspects. Clin Chem Acta 294:1–29

    Article  CAS  Google Scholar 

  3. Opara E (2002) Oxidative stress, micronutrients, diabetes mellitus and its complications. J R Soc Health 122:28–34

    Article  CAS  Google Scholar 

  4. Davi G, Falco A, Patrono C (2005) Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal 7:256–268

    Article  PubMed  CAS  Google Scholar 

  5. Kiliari S, Pullakhandam R, Nair KM (2010) Zinc inhibits oxidative stress induced iron signaling and apoptosis in caco-2 cells. Free Radic Biol Med 48(7):961–968

    Article  Google Scholar 

  6. Upadhyay R, Panda SK (2010) Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza. J Hazard Mater 175(1–3):1081–1084

    Article  PubMed  CAS  Google Scholar 

  7. Giluder EM, Heth DA (1971) Colorimetric determination with bound “calmagite” of magnesium in human blood plasma. Clin Chem 17:663–666

    Google Scholar 

  8. Mann CK, Yoe JH (1956) Spectrophotometric determination of magnesium with sodium 1-Azo-2-hydroxy-3-(2, 4-dimethylcarboxanilido)-naphthalene-1′-(2-hydroxybenzene-5-sulfonate). Anal Chem 28:202–205

    Article  CAS  Google Scholar 

  9. Zervas E, Papatheodorou G, Psathakis K, Panagou P, Georgatou N, Loukudes S (2003) Reduced intracellular Mg concentrations in patients with acute asthma. Chest 123:113–118

    Article  PubMed  CAS  Google Scholar 

  10. Longo R (2010) Diabetes under control: understanding oral antidiabetic agents. Am J Nurs 110(2):49–52

    PubMed  Google Scholar 

  11. Green J, Feinglos M (2008) New combination treatments in the management of diabetes: focus on sitagliptin–metformin. Vasc Health Risk Manag 4(4):743–751

    PubMed  CAS  Google Scholar 

  12. National Institute for Health and Clinical Excellence (2008) The management of type 2 diabetes (update). (Clinical guideline 66). NICE, London

    Google Scholar 

  13. Klip A, Leiter LA (1990) Cellular mechanism of action of metformin. Diab Care 13:696–704

    Article  CAS  Google Scholar 

  14. Gorelik O, Efrati S, Berman S, Almozino-Sarafian D, Shteinshnaider M, Cohen N (2007) Effect of various clinical variables on total intracellular magnesium in hospitalized normomagnesemic diabetic patients before discharge. Biol Trace Elem Res 120(1–3):102–109

    Article  PubMed  CAS  Google Scholar 

  15. Lima ML, Cruz T, Rodriguez LE, Bomfim O, Melo J, Correia R, Porto M, Cedro A, Vicente E (2009) Serum and intracellular Mg deficiency in patients with metabolic syndrome. Evidences for its relation to insulin resistance. Diabetes Res Clin Pract 83(2):257–262

    Article  CAS  Google Scholar 

  16. Kandeel FR, Balon E, Scott S, Nadler JL (1996) Magnesium deficiency and glucose metabolism in rat adipocytes. Metab Clin Exp 45(7):838–843

    PubMed  CAS  Google Scholar 

  17. Guerrero-Romero F, Tamez-Perez HE, Gonzáles-Gonzáles G, Sarinas-Martinez AM, Montes-Villarreal J, Treviño-Ortiz JH, Rodriguez-Moran M (2004) Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab 30(3):253–258

    Article  PubMed  CAS  Google Scholar 

  18. Takaya J, Higashino H, Kobayashi Y (2004) Intracellular magnesium and insulin resistance. Magnes Res 171(2):126–136

    Google Scholar 

  19. Humphries S, Kushner H, Falkner B (1999) Low dietary magnesium is associated with insulin resistance in a sample of young non diabetic Black Americans. Am J Hypertens 12:747–756

    Article  PubMed  CAS  Google Scholar 

  20. Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R (1993) Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21(6):1024–1029

    PubMed  CAS  Google Scholar 

  21. Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin-resistance. Arch Biochem Biophyis 458(1):40–47

    Article  CAS  Google Scholar 

  22. Banza J, Ortiz J, Dahan M, Justiniano M, Saenz R, Velez M (1998) Reliability of serum magnesium during diabetic ketoacidosis in children. Bol Asoc Méd PR 90:108–112

    Google Scholar 

  23. Corica F, Allegro A, Ientile R, Buemi M, Corsonello A, D’Angelo R, Bonanzinga S, Cucinotta D, Ceruso D (1997) Reduced intraplatelet magnesium concentrations in elderly patients with non-insulin dependent diabetes mellitus (NIDDM). Arch Gerontol Geriatr 25(3):255–262

    Article  PubMed  CAS  Google Scholar 

  24. Ewis SA, Abdel-Rahman MS (1997) Influence of atenolol and/or metformin on glutathione and magnesium levels in diabetic rats. J Appl Toxicol 17(6):409–413

    Article  PubMed  CAS  Google Scholar 

  25. Guerrero-Romero F, Rodriquez-Morán M (2005) Complementary therapies for diabetes: the case for chromium, magnesium, and antioxidants. Arch Med Res 36(3):250–257

    Article  PubMed  CAS  Google Scholar 

  26. Kishimoto Y et al (2010) Effects of magnesium on postprandial serum lipid responses in healthy human subjects. Br J Nutr 103(4):469–472

    Article  PubMed  CAS  Google Scholar 

  27. Takeda R, Nakamura T (2008) Effects of high magnesium intake on bone mineral status and lipid metabolism in rats. J Nutr Sci Vitaminol 54(1):66–75

    Article  PubMed  CAS  Google Scholar 

  28. Rosenstock J et al (2010) The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabets Care 10:2337

    Google Scholar 

  29. Glueck CJ, Goldenberg N, Wang P (2009) Metformin-diet ameliorates coronary heart disease risk factors and facilitates resumption of regular menses in adolescents with polycystic ovary syndrome. J Pediatr Endocrinol Metab 22(9):815–826

    Article  PubMed  CAS  Google Scholar 

  30. Hashemipour M et al (2009) Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones 8(4):279–285

    PubMed  Google Scholar 

  31. Partide-Hernández G, Arreola F, Fenton B, Carbeza M, Román-Ramos R, Revilla-Monsalve MC (2006) Effect of zinc replacement on lipids and lipoproteins in type 2-diabetic patients. Biomed Pharmacother 60(4):161–168

    Article  Google Scholar 

  32. Lopez-Ridaura R, Willet WC, Rimm EB, Liu S, Stampfer MJ, Manson JE, Hu FB (2004) Magnesium intake and risk of type 2 diabetes in men and women. Diab Care 27:134–140

    Article  CAS  Google Scholar 

  33. Rayssiguier Y, Gueux E, Nowacki W, Rock E, Mazur A (2006) High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation. Magnes Res 19(4):237–243

    PubMed  CAS  Google Scholar 

  34. Guerrero-Romerro F, Rodriguez-Morán M (2006) Hypomagnesemia, oxidative stress, inflammation and metabolic syndrome. Diab Metab Rev 22(6):471–476

    Article  Google Scholar 

  35. Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin-resistance. Arch Biochem Biophys 458(1):40–47

    Article  PubMed  CAS  Google Scholar 

  36. De Valk HW (1999) Magnesium in diabetes mellitus. Neth J Med 54(4):139–146

    Article  PubMed  Google Scholar 

  37. Garland HO (1992) New experimental data on the relationship between diabetes mellitus and magnesium. Magnes Res 5(3):193–202

    PubMed  CAS  Google Scholar 

  38. Tanaka A, Kaneto H, Miyatsura T, Yamamoto K, Yoshiuchi K, Shimomura I, Matsuoka T-A, Matsuhisa M (2009) Role of copper ion in the pathogenesis of type 2 diabetes. Endocr J 56(5):699–706

    Article  PubMed  CAS  Google Scholar 

  39. Cai L, Li XK, Song Y, Cherian MG (2005) Essentiality, toxicology and chelation therapy of zinc and cooper. Curr Med Chem 12(23):2755–2763

    Article  Google Scholar 

  40. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122(1):1–18

    Article  PubMed  CAS  Google Scholar 

  41. Walter RM, Uriu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW, Keen CL (1991) Copper, zinc, manganese and magnesium status and complications of diabetes mellitus. Diab Care 14(11):1050–1056

    Article  Google Scholar 

  42. Cooper GJ, Chan YK, Dissanayake AM, Leahy FE, Keogh GF, Frampton CM, Gamble GD, Brunton DH, Baker JR, Poppitt SD (2005) Demonstration of a hyperglicemia-driven pathogenic abnormality of cooper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes 54(5):1468–1476

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Daniela Doşa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doşa, M.D., Hangan, LT., Crauciuc, E. et al. Influence of Therapy with Metformin on the Concentration of Certain Divalent Cations in Patients with Non-insulin-Dependent Diabetes Mellitus. Biol Trace Elem Res 142, 36–46 (2011). https://doi.org/10.1007/s12011-010-8751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8751-9

Keywords

Navigation