Skip to main content
Log in

The Co-effect of Cordyceps sinensis and Strontium on Osteoporosis in Ovariectomized Osteopenic Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The co-effect of Cordyceps sinensi (CS; caterpillar fungus) and strontium on ovariectomized osteopenic rats was studied in this paper. After the rats were treated orally with CS, strontium (SR), and CS rich in strontium (CSS), respectively, the urine calcium, plasma calcium, plasma phosphorus, bone mineral content, mechanical testing, and the mass of uterus, thymus, and body were examined. Both CSS and SR have a positive effect on mechanical strength and mineral content of ovariectomized osteopenic rats. However, femoral neck strength in the CSS-treated group was higher than those in the SR-treated groups. CSS and SR significantly decreased urinary calcium excretion and plasma total calcium and inorganic phosphate concentrations. On the contrary, CS and CSS significantly increased weights of atrophic uteri and weights of body and also decreased the thymus mass in animals, whereas SR did not exhibit any such effects. Our experiments have demonstrated that CSS possess a preferable effect against the decrease of bone strength and bone mineral mass caused by osteoporosis. It was caused by the co-effect of CS and strontium. The mechanism of it includes decreases bone resorption, increases bone formation, increases in body weight, and enhances 17β-estradiol-producing as well as enhancing the immune functions in animals. The data provide an important proof of concept that CSS might be a new potential therapy for the management of postmenopausal osteoporosis in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morohashi T, Sano T, Yamada S (1994) Effects of strontium on calcium metabolism in rats. I. A distinction between the pharmacological and toxic doses. Jpn J Pharmacol 64:155–162

    Article  PubMed  CAS  Google Scholar 

  2. Marie PJ, Garba MT, Hott M, Miravet L (1985) Effect of low doses of stable strontium on bone metabolism in rats. Miner Electrolyte Metab 11:5–13

    PubMed  CAS  Google Scholar 

  3. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468

    Article  PubMed  CAS  Google Scholar 

  4. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822

    Article  PubMed  CAS  Google Scholar 

  5. Blake GM, Fogelman I (2006) Strontium ranelate: a novel treatment for postmenopausal osteoporosis: a review of safety and efficacy. Clin Interv Aging 1(4):367–375

    Article  PubMed  CAS  Google Scholar 

  6. Koh JH, Kim KM, Kim JM, Song JC et al (2003) Antifatigue and antistress effect of the hot-water fraction from mycelia of Cordyceps sinensis. Biol Pharm Bull 26:691–694

    Article  PubMed  CAS  Google Scholar 

  7. Bok JW, Lermer L, Chilton J, Klingeman HG et al (1999) Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry. Phytochemistry 51:891–898

    Article  PubMed  CAS  Google Scholar 

  8. Lee H, Kim YJ, Kim HW, Lee DH et al (2006) Introduction of apoptosis Cordyceps militaries through activation of caspase-3 in leukemia HL-60 cells. Biol Pharm Bull 29:670–674

    Article  PubMed  CAS  Google Scholar 

  9. Li SP, Zhao KJ, Ji ZN et al (2003) A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci 73:2503–2513

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi Y, Kagota S, Nakamura K, Shinozuka K, Kunitomo M (2000) Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res 14:647–649

    Article  PubMed  CAS  Google Scholar 

  11. Kuo YC, Tsai WJ, Wang JY, Chang SC (2001) Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci 68:1067–1082

    Article  PubMed  CAS  Google Scholar 

  12. Koh JH, Yu KW, Suh HJ, Choi YM et al (2002) Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis. Biosci Biotechnol Biochem 66:407–411

    Article  PubMed  CAS  Google Scholar 

  13. Wu Y, Sun H, Qin F, Pan Y, Sun C (2006) Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice. Phytother Res 20:646–652

    Article  PubMed  CAS  Google Scholar 

  14. Zhang G, Huang Y, Bian Y, Wong JH et al (2006) Hypoglycemic activity of the fungi Cordyceps militaries, Cordyceps sinensis, tricholoma mongolicum, and omphalia lapidescens in streptozottocin-induced diabetic rats. Appl Microbiol Biotechnol 72:1152–1156

    Article  PubMed  CAS  Google Scholar 

  15. Balon TW, Jasman AP, Zhu JS (2002) A fermentation product of Cordyceps sinensis increases whole-body insulin sensitivity in rats. J Altern Complement Med 2002(8):315–323

    Article  Google Scholar 

  16. Canalis E (2009) New treatment modalities in osteoporosis. Endocr Pract 2010 29:1–23

    Google Scholar 

  17. Wang SM, Lee LJ, Lin WW, Chang CM (1998) Effects of a water-soluble extract of Cordyceps sinensis on steroidogenesis and capsular morphology of lipid droplets in cultured rat adrenocortical cells. J Cell Biochem 69:483–489

    Article  PubMed  CAS  Google Scholar 

  18. Chunchao H, Junhua Y, Yingzi W, Lingjun L (2006) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol 20:191–196

    Article  Google Scholar 

  19. Han C, Cui B, Wang Y (2008) Vanadium uptake by biomass of Coprinus comatus and their effect on hyperglycemic mice. Biol Trace Elem Res 124(1):35–39

    Article  PubMed  CAS  Google Scholar 

  20. Han C, Liu T (2009) A comparison of hypoglycemic activity of three species of basidiomycetes rich in vanadium. Biol Trace Elem Res 127(2):177–182

    Article  PubMed  CAS  Google Scholar 

  21. Weiss J, Taylor GR, Zimmermann F, Nebendahl K (2000) Collection of body fluids. In: Laboratory rat book. New York: Academic Press, pp 485–510

  22. Changrani NR, Chonkar A, Adeghate E (2006) Effects of streptozotocininduced type 1 diabetes mellitus on total protein concentrations and cation contents in the isolated pancreas, parotid, submandibular, and lacrimal glands of rats. Ann N Y Acad Sci 1084:503–519

    Article  PubMed  CAS  Google Scholar 

  23. Ma Z, Fu Q (2009) Comparison of the therapeutic effects of yeast-incorporated gallium with those of inorganic gallium on ovariectomized osteopenic rats. Biol Trace Elem Res. Aug 4. [Epub ahead of print]

  24. Huang BM, Hsiao KY, Chuang PC, Wu MH, Pan HA, Tsai SJ (2004) Upregulation of steroidogenic enzymes and ovarian 17beta-estradiol in human granulosa-lutein cells by Cordyceps sinensis mycelium. Biol Reprod 70(5):1358–1364

    Article  PubMed  CAS  Google Scholar 

  25. Tsunoo A, Taketomo N, Tsuboi H, Kamijo MA et al (1995) Cordyceps sinensis: its diverse effects on mammals in vitro and in vivo. In: New Initiatives in Mycological Research, pp. 1–10

  26. Halpern GM (1990) Cordyceps. In: Altieri JT (ed) China's healing mushroom. Avery Publishing Group Press, New York, pp 1–95

    Google Scholar 

  27. Yao W, Tian XY, Chen J et al (2007) Rolipram, a phosphodiesterase 4 inhibitor, prevented cancellous and cortical bone loss by inhibiting endosteal bone resorption and maintaining the elevated periosteal bone formation in adult ovariectomized rats. J Musculoskelet Neuronal Interact 7(2):119–130

    PubMed  CAS  Google Scholar 

  28. Tomita A (1990) Osteoporosis–blood biochemistry. Jpn J Clin Med 48:2838–2844

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, W., Yan, Yb., Wang, Pj. et al. The Co-effect of Cordyceps sinensis and Strontium on Osteoporosis in Ovariectomized Osteopenic Rats. Biol Trace Elem Res 141, 216–223 (2011). https://doi.org/10.1007/s12011-010-8711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8711-4

Keywords

Navigation