Skip to main content
Log in

Formulation of Nutrient Medium for In Vitro Somatic Embryo Induction in Plantago ovata Forsk

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A nutrient medium has been formulated by altering the macro- and micro-elemental concentration in the culture medium for in vitro somatic embryo induction of economically important medicinal plant Plantago ovata Forsk .A comparison was made between induced embryos with normal embryos (produced in Murashige and Skoog (MS) medium) to observe frequency of embryo induction and also to determine regeneration efficiency. In the present investigation, three different media have been formulated. Among them, FM3 (formulated media, treatment 3) was the most suitable for increasing the frequency of somatic embryo production and regeneration of P. ovata Forsk. Better result was obtained using formulated medium than with MS medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bonga (1991) In vitro propagation of conifers: fidelity of the clonal offspring. In: Ahuja MR (ed) Woody plant biotechnology. Plenum, New York, pp 13–21

    Google Scholar 

  2. Kintzios S, Drossopoulos JB, Lymperopoulos Ch (2001) Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from leaves of chilli pepper. Plant Cell Tiss Org 67(1):55–62

    Article  CAS  Google Scholar 

  3. Pullman GS, Montello P, Cairney J, Xu N, Feng X (2003) Loblolly pine (Pinus taeda L.) somatic embryogenesis: maturation improvements by metal analyses of zygotic and somatic embryos. Plant Sci 164:955–969

    Article  CAS  Google Scholar 

  4. Kothari SL, Agarwal K, Kumar S (2004) Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet—Eleusine coracana (L.) Gaertin. In Vitro Dev Biology–Pl 40(5):515–519

    Article  CAS  Google Scholar 

  5. Montoro P, Etienne H, Carron MP (1995) Effect of calcium on callus friability and somatic embryogenesis in Hevea brasiliensis Mull. Arg. relations with callus mineral nutrition, nitrogen metabolism and water parameters. J Exp Bot 46(2):255–261

    Article  CAS  Google Scholar 

  6. Su WW, Hwang WI, Kim SY, Sagawa Y (1997) Induction of somatic embryogenesis in Azadirachta indica. Plant Cell Tiss Org 50:91–95

    Article  Google Scholar 

  7. Sahrawat AK, Chand S (1999) Stimulatory effect of copper on plant regeneration in indica rice (Oryza sativa L.). J Plant Physiol 154(4):517–522

    CAS  Google Scholar 

  8. Zaidi MA, Narayanan M, Sardana R, Taga I, Postel S, Johns R, McNulty M, Mottiar Y, Mao J, Loit E, Altosaar I (2006) Optimizing tissue culture media for efficient transformation of different indica rice genotypes. Agronomy Res 4(2):563–575

    Google Scholar 

  9. Groll J, Mycock DJ, Gray VM (2002) Effect of medium salt concentration on differentiation and maturation of somatic embryos of cassava (Manihot esculenta Crantz). Ann Bot 89:645–648

    Article  PubMed  CAS  Google Scholar 

  10. Samson NP, Campa C, Le Gal L, Noirot M, Thomas G, Lokeswari TS, de Kochko A (2006) Effect of primary culture medium composition on high frequency somatic embryogenesis in different Coffea species. Plant Cell Tiss Org 86:37–45

    Article  Google Scholar 

  11. Kim YW, Moon HK (2007) Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepsis). Plant Cell Tiss Org 88:241–245

    Article  CAS  Google Scholar 

  12. Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnology 26(1–2):44–52

    Article  PubMed  CAS  Google Scholar 

  13. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  PubMed  CAS  Google Scholar 

  14. Curtis WR, Hosogawa PM, Emery A (1991) Modeling linear and variable growth in phosphate limited suspension cultures of opium poppy. Biotechnol Bioeng 38:371–379

    Article  PubMed  CAS  Google Scholar 

  15. Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tiss Org 61(2):115–123

    Article  Google Scholar 

  16. Briskin D, Hanson JB (1992) How does the plant plasma membrane H+-ATPase pump protons? J Exp Bot 43:269–289

    Article  CAS  Google Scholar 

  17. Timmers ACJ, Reiss HD, Schel JHN (1991) Digitonin-aided loading of fluo-3 into embryogenic plant cells. Cell Calcium 12:515–521

    Article  PubMed  CAS  Google Scholar 

  18. Silva P, Ricardo CPP (1992) beta-Fructosidases and in vitro de-differentiationredifferentiation of carrot cells. Phytochemistry 31:1507–1511

    Article  CAS  Google Scholar 

  19. Kintzios S, Drossopoulos J, Lymperopoulos Ch (2000) Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from young mature leaves of rose (Rosa hybrida). J Plant Nutr 23(10):1407–1420

    Article  CAS  Google Scholar 

  20. Loh CS, Lim GK (1992) The influence of medium components on secondary embryogenesis of winter oil seed rape, Brassica napus Oleifera (Metzg) Sink. New Phytologist 121(3):425–430

    Article  Google Scholar 

  21. Mihaljevic S, Bjedov I, Kovac M, Levanic DL, Jelaska S (2002) Effect of explant source and growth regulators on in vitro callus growth of Taxus baccata L. Washingtonni. Food Technol Biotech 40(4):299–303

    CAS  Google Scholar 

  22. He DG, Yang YM, Scott KJ (1991) Zinc deficiency and the formation of white structures in immature embryo cultures of wheat (Triticum aestivum L.). Plant Cell Tiss Org 24:9–12

    Article  CAS  Google Scholar 

  23. Dodds JH, Roberts LW (1985) Experiments in plant tissue culture. Cambridge University Press, London, pp 42–66

    Google Scholar 

  24. Pullman GS, Johnson S (2002) Somatic embryogenesis in Loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668

    Article  Google Scholar 

  25. Saha P, Sen Raychaudhuri S, Sudarshan M, Chakraborty A (2010) Analysis of trace elements during different developmental stages of somatic embryogenesis in Plantago ovata Forssk using energy dispersive X-ray fluorescence. Biol Trace Elem Res. doi:10.1007/s12011-009-8497-4

  26. Das Pal M, Sen Raychaudhuri S (2001) Enhanced development of somatic embryos of Plantago ovata Forsk by additives. In Vitro Cell Dev Biology Pl 37:568–571

    Article  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  28. Das D, Das A (1993) Statistics in biology and psychology, 2nd edn. Academic, Calcutta

    Google Scholar 

  29. Fisichella M, Silvi E, Morini S (2006) Regeneration of somatic embryos and roots from quince leaves cultured on media with different macroelement composition. Plant Cell Tiss Org 63:101–107

    Article  Google Scholar 

  30. Simola LK, Satanen A (2006) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plantarum 80(1):27–35

    Article  Google Scholar 

  31. Gibbs RD (1974) Chemotaxonomy of flowering plants, vol 1–3. McGill-Queen’s University Press, Montreal

    Google Scholar 

  32. Kanias GD, Philianos SM (1978) Determination of trace elements in a medicinal plant by neutron activation analysis. J Radioanal Chem 46:87–93

    Article  CAS  Google Scholar 

  33. Evans DA, Sharp WR, Flick CE (1981) Growth and behaviour of cell cultures: embryogenesis and organogenesis. In: Thorpe TA (ed) Plant tissue culture: methods and applications in agriculture. Academic, New York, pp 45–113

    Google Scholar 

  34. Neumann KH, Steward FC (1968) Investigations on the growth and metabolism of cultured explants of Daucus carota. I. Effects of iron, molybdenum and manganese on growth. Planta 81(4):333–350

    Article  CAS  Google Scholar 

  35. Gauch HG (1973) Inorganic plant nutrition. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  36. Oswald TH, Smith AE, Phillips DV (2006) Callus and plantlet regeneration from cell cultures of ladino clover and soybean. Physiol Plantarum 39(2):129–134

    Article  Google Scholar 

  37. Clairmont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293

    Article  PubMed  CAS  Google Scholar 

  38. Maalej M, Chaari-Rkhiss A, Drira N (2006) Contribution to the improvement of olive tree somatic embryogenesis by mineral and organic analysis of zygotic embryos. Euphytica 151:31–37

    Article  CAS  Google Scholar 

  39. Kintzios S, Stavropoulou SS (2004) Accumulation of selected macronutrients and carbohydrates in melon tissue cultures: association with pathways of in vitro dedifferentiation and differentiation (organogenesis, somatic embryogenesis). Plant Sci 167:655–664

    Article  CAS  Google Scholar 

  40. Sahasrabudhe NA, Nandi M, Bahulikar RA (1999) Influence of boric acid on somatic embryogenesis of a cytosterile line of indica rice. Plant Cell Tiss Org 58(1):73–75

    Article  CAS  Google Scholar 

  41. Arnold RLB, Fenner M, Edwards PJ (1995) Influence of potassium nutrition on germinability, abscisic acid content and sensitivity of the embryo to abscisic acid in developing seeds of Sorghum bicolor (L.) Moench. New Phytol 130(2):207–216

    Article  CAS  Google Scholar 

  42. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    PubMed  CAS  Google Scholar 

  43. Niedz RP, Evens TJ (2008) The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinesis (L.) Osbeck). BMC Plant Biology 8:126–136

    Article  PubMed  Google Scholar 

  44. Ghosh B, Sen S (1991) Plant regeneration through somatic embryogenesis from spear callus culture of Asparagus cooperi. Plant Cell Rep 9:667–670

    Article  CAS  Google Scholar 

  45. Shetty K, McKersie BD (1993) Proline, thioproline and potassium mediated stimulation of somatic embryogenesis in alfalfa (Medicago sativa L.). Plant Sci 88:185–193

    Article  CAS  Google Scholar 

  46. George EF (1993) Plant propagation by tissue culture. First published 1984. British Library, 574 pp

  47. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York, pp 33–347

    Google Scholar 

  48. Dahleen LS (1995) Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell Tiss Org 43:267–269

    CAS  Google Scholar 

  49. Federico R, Cona A, Angelini R, Schinina ME, Giartosio A (1990) Characterization of maize polyamine oxidase. Phytochemistry 29:2411–2414

    Article  PubMed  CAS  Google Scholar 

  50. Yue-sheng Y, Gui-zhao Z, Yu-yu J (1999) A further study on the effects of copper in rice callus culture. Chinese J Rice Sci 13(4):245–247

    Google Scholar 

  51. Kaplan LA, Pesce AJ, Kazmierczak SC (2003) Clinical chemistry theory, analysis, correlation, 4th edn. Mosby, London

    Google Scholar 

  52. Echavarri B, Soriano M, Cistue L, Valles MP, Castillo AM (2008) Zinc sulphate improved microspore embryogenesis in barley. Plant Cell Tiss Org 93:295–301

    Article  CAS  Google Scholar 

  53. Dussert S, Verdeil JL, Buffard-Morel J (1995) Specific nutrient uptake during initiation of somatic embryogenesis in coconut calluses. Plant Sci 111:229–236

    Article  CAS  Google Scholar 

  54. Tamas C, Szucs P, Rakszegi M, Tamas L, Bedo Z (2004) Effect of combined changes in culture medium and incubation conditions on the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell Tiss Org 79:39–44

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express sincere gratitude to UGC-DAE CRS Kolkata chapter for the facility of ED-XRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarmistha Sen Raychaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, P., Bandyopadhyay, S. & Raychaudhuri, S.S. Formulation of Nutrient Medium for In Vitro Somatic Embryo Induction in Plantago ovata Forsk. Biol Trace Elem Res 140, 225–243 (2011). https://doi.org/10.1007/s12011-010-8684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8684-3

Keywords

Navigation