Skip to main content

Advertisement

Log in

Relationships Among the Hippocampus, Dentate Gyrus, Mammillary Body, Fornix, and Anterior Commissure from a Viewpoint of Elements

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To elucidate the relationships among the brain regions belonging to the limbic system, the authors investigated the relationships among the hippocampus, dentate gyrus, mammillary body, and fornix, using the anterior commissure as a control, from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the hippocampi, dentate gyri, mammillary bodies, fornices, and anterior commissures were resected from identical cerebra of the subjects. The subjects consisted of 23 men and 23 women, ranging in age from 70 to 101 years (average age = 83.5 ± 7.5 years). After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure. It was found that there were extremely or very significant direct correlations among all of the five brain regions of the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure in the P content. Likewise, with regard to the Fe content, there were significant direct correlations among the four brain regions belonging to the limbic system, except for the anterior commissure. In both the Ca and Zn contents, there were extremely or very significant direct correlations among the hippocampus, dentate gyrus, and mammillary body of the gray matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tohno S, Azuma C, Ongkana N et al (2008) Age-related changes of elements in human corpus callosum and relationships among these elements. Biol Trace Element Res 121:124–133

    Article  CAS  Google Scholar 

  2. Ongkana N, Tohno S, Tohno Y et al (2009) Age-related changes of elements in the anterior commissures and the relationships among their elements. Biol Trace Element Res doi:10.1007/s12011-009-8496-5

    Google Scholar 

  3. Tohno Y, Tohno S, Ongkana N et al (2010) Age-related changes of elements and relationships among elements in human hippocampus, dentate gyrus, and fornix. Biol Trace Element Res doi:10.1007/s12011-009-8605-5

    Google Scholar 

  4. Ongkana N, Zhao X-Z, Tohno S et al (2007) High accumulation of calcium and phosphorus in the pineal bodies with aging. Biol Trace Element Res 119:120–127

    Article  CAS  Google Scholar 

  5. Ke L, Tohno S, Tohno Y et al (2008) Age-related changes of elements in human olfactory bulbs and tracts and relationships among their contents. Biol Trace Element Res 126:65–75

    Article  CAS  Google Scholar 

  6. Suwannahoy P, Tohno S, Mahakkanukrauh P et al (2009) Calcium increase in the mammillary bodies with aging. Biol Trace Element Res doi:10.1007/s12011-009-8491-x

    Google Scholar 

  7. Raza M, Deshpande LS, Blair RE et al (2007) Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci Lett 418:77–81

    Article  PubMed  CAS  Google Scholar 

  8. Yoo K-Y, Hwang IK, Il-J K et al (2007) Age-dependent changes in iron deposition in the Gerbil hippocampus. Exp Anim 56:21–28

    Article  PubMed  CAS  Google Scholar 

  9. Bartzokis G, Tishler TA, Lu PH et al (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28:414–423

    Article  PubMed  CAS  Google Scholar 

  10. Stadlbauer A, Salomonowitz E, Strunk G et al (2008) Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system. Eur Radiol 18:130–137

    Article  PubMed  Google Scholar 

  11. Tisserand DJ, Visser PJ, van Boxtel MPJ et al (2000) The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range. Neurobiol Aging 21:569–576

    Article  PubMed  CAS  Google Scholar 

  12. Tohno Y, Tohno S, Matsumoto H et al (1985) A trial of introducing soft X-ray apparatus into dissection practice for students. J Nara Med Assoc 36:365–370

    Google Scholar 

  13. Tohno Y, Tohno S, Minami T et al (1996) Age-related changes of mineral contents in human thoracic aorta and in the cerebral artery. Biol Trace Element Res 54:23–31

    Article  CAS  Google Scholar 

  14. Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44

    PubMed  CAS  Google Scholar 

  15. Davison AN, Cuzner M, Banik NL et al (1966) Myelinogenesis in the rat brain. Nature 212:1373–1374

    Article  PubMed  CAS  Google Scholar 

  16. Morell P, Norton WT (1980) Myelin. Sci Am 242:88–119

    Article  PubMed  CAS  Google Scholar 

  17. LoPachin RM, Lowery J, Eichbery J et al (1988) Distribution of elements in rat peripheral axons and nerve cell bodies determined by X-ray microprobe analysis. J Neurochem 51:764–775

    Article  PubMed  CAS  Google Scholar 

  18. LoPachin RM, LoPachin VR, Saubermann AJ (1990) Effects of axotomy on distribution and concentration of elements in rat sciatic nerve. J Neurochem 54:320–332

    Article  PubMed  CAS  Google Scholar 

  19. Riehemann S, Volz HP, Wenda B et al (1999) Frontal lobe in vivo (31) P-MRS reveals gender differences in healthy controls, not in schizophrenics. NMR Biomed 12:483–489

    Article  PubMed  CAS  Google Scholar 

  20. Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93

    Article  PubMed  CAS  Google Scholar 

  21. Erb GL, Osterbur DL, Le Vine SM (1996) The distribution of iron in the brain: a phylogenetic analysis using iron histochemistry. Dev Brain Res 93:120–128

    Article  CAS  Google Scholar 

  22. Cheepsunthorn P, Palmer C, Menzies S et al (2001) Hypoxic/ischemic insult alters ferritin expression and myelination in neonatal rat brains. J Comp Neurol 431:382–396

    Article  PubMed  CAS  Google Scholar 

  23. de los Monteros SM, Korsak RA, Tran T (2000) Dietary iron and the integrity of the developing rat brain: a study with the artificially-reared rat pup. Cell Mol Biol (Noisy-le-grand) 46:501–515

    CAS  Google Scholar 

  24. Connor JR, Menzies SL, St Martin SM et al (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611

    Article  PubMed  CAS  Google Scholar 

  25. Levenson CW, Tassabehji NM (2004) Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 3:251–263

    Article  PubMed  CAS  Google Scholar 

  26. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. NeuroImage 40:35–42

    Article  PubMed  CAS  Google Scholar 

  27. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  PubMed  CAS  Google Scholar 

  28. Huang F-MS (1973) Heavy metals in the brain. A light microscope study of the rat with Timms’ sulphide silver method. Methodological considerations and cytological and regional staining patterns. Adv Anat Embryol Cell Biol 47:1–71

    Google Scholar 

  29. Howell GA, Frederickson CJ (1989) A retrograde transport method for mapping zinc-containing fiber systems in the brain. Brain Res 515:277–286

    Article  Google Scholar 

  30. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  PubMed  CAS  Google Scholar 

  31. Gellein K, Garruto RM, Syversen T et al (2003) Concentrations of Cd, Co, Cu, Fe, Mn, Rb, V, and Zn in formalin-fixed brain tissue in amyotrophic lateral sclerosis and Parkinsonism-dementia complex of Guam determined by high-resolution ICP-MS. Biol Trace Element Res 96:39–60

    Article  CAS  Google Scholar 

  32. Ehmann WD, Markesbery WR, Alauddin M et al (1986) Brain trace elements in Alzheimer’s disease. Neurotoxicology 7:195–206

    PubMed  CAS  Google Scholar 

  33. Smeyers-Verbeke J, Defrise-Gussenhoven E, Ebinger G et al (1974) Distribution of Cu and Zn in human brain tissue. Clin Chim Acta 51:309–314

    Article  PubMed  CAS  Google Scholar 

  34. Rajan MT, Jagannatha Rao KS, Mamatha BM et al (1997) Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 146:153–166

    Article  PubMed  CAS  Google Scholar 

  35. Yamamori T, Rockland KS (2006) Neocortical areas, layers, connections, and gene expression. Neurosci Res 55:11–27

    Article  PubMed  CAS  Google Scholar 

  36. Tochitani S, Hashikawa T, Yamamori T (2003) Expression of occ1 mRNA in the visual cortex during postnatal development in macaques. Neurosci Lett 337:114–116

    Article  PubMed  CAS  Google Scholar 

  37. Wagner E, Luo T, Drager UC (2002) Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cereb Cortex 12:1244–1253

    Article  PubMed  Google Scholar 

  38. Watakabe A, Sugai T, Nakaya N et al (2001) Similarity and variation in gene expression among human cerebral cortical subregions revealed by DNA macroarrays: technical consideration of RNA expression profiling from postmortem samples. Brain Res Mol Brain Res 88:74–82

    Article  PubMed  CAS  Google Scholar 

  39. Levitt P (1984) A monoclonal antibody to limbic system neurons. Science 223:299–301

    Article  PubMed  CAS  Google Scholar 

  40. Zacco A, Cooper V, Chantler PD et al (1990) Isolation, biochemical characterization and ultrastructural analysis of the limbic system-associated membrane protein (LAMP), a protein expressed by neurons comprising functional circuits. J Neurosci 10:73–90

    PubMed  CAS  Google Scholar 

  41. Ongkana N, Tohno S, Prieto Payo IM et al (2007) Age-related changes of elements in thoracic and abdominal aortas and coronary, common carotid, pulmonary, splenic, common iliac, and uterine arteries and relationships in elements among their arteries. Biol Trace Element Res 117:23–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Tohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohno, Y., Tohno, S., Ongkana, N. et al. Relationships Among the Hippocampus, Dentate Gyrus, Mammillary Body, Fornix, and Anterior Commissure from a Viewpoint of Elements. Biol Trace Elem Res 140, 35–52 (2011). https://doi.org/10.1007/s12011-010-8680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8680-7

Keywords

Navigation