Skip to main content
Log in

Vitex negundo Modulates Selenite-Induced Opacification and Cataractogensis in Rat Pups

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recently, much interest has been generated in the search for phytochemical therapeutics, as they are largely free from adverse side effects and economical. The goal of this study was to determine the efficacy of Vitex negundo in modulating the selenite-induced oxidative stress in vivo model. Sprague–Dawley rat pups of 8 days old were used for the study and divided into control (G I), selenite induced (G II), and selenite + V. negundo treated (G III). Cataract was induced by the single subcutaneous injection of sodium selenite (4 mg/kg body weight) on the tenth day and V. negundo (2.5 mg/Kg body weight) administered intraperitoneally from eighth to 15th day. Morphological examination of the rat lenses revealed no opacification in G I and mild opacification in G III whereas dense opacification in G II (stages 4–6). Levels of selenium in G II and G III showed no significant changes. The activities of superoxide dismutase, catalase, and Ca2+ATPase were significantly increased in G III compared to G II (p < 0.05), while lower level of reactive oxygen species, Ca2+, and thiobarbituric acid reactive substances were observed in G III compared G II (p < 0.05). These results indicate the therapeutic potential of methanolic extract of V. negundo on modulating biochemical parameters against selenite-induced cataract, which have been reported in this paper for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

References

  1. Nirmalan PK, Krishnadas R, Ramakrishnan RD, Thulasiraj R, Katz J, Tielsch JM, Robin AL (2003) Lens opacities in a rural population of southern India: the aravind comprehensive eye study. Invest Ophthalmol Vis Sci 44:4639–4643

    Article  PubMed  Google Scholar 

  2. Spector A (1995) Oxidative stress induced cataract: mechanism of action. FASEB J 9:1173–1182

    PubMed  CAS  Google Scholar 

  3. Gupta PD, Johar K, Vasavada A (2004) Causative and preventive action of calcium in cataractogenesis. Acta Pharmacol Sin 25:1250–1256

    PubMed  Google Scholar 

  4. Doganay S, Turkoz Y, Evereklioglu C, Er H, Bozaran M, Ozerol E (2002) Use of caffeic acid phenethyl ester to prevent sodium selenite-induced cataract in rat eyes. J Cataract Refract Surg 28:1457–1462

    Article  PubMed  Google Scholar 

  5. Ostadalova I, Babicky A, Obenberger J (1978) Cataract induced by administration of a single dose of sodium selenite to suckling rats. Experientia 34:222–223

    Article  PubMed  CAS  Google Scholar 

  6. Shearer TR, Ma H, Fukiage K, Azuma M (1997) Selenite nuclear cataract: review of the model. Mol Vis 38:1–14

    Google Scholar 

  7. Gupta SK, Trivedi D, Srivastava S, Joshi S, Halder N, Verma SD (2003) Lycopene attenuates oxidative stress induced experimental cataract development: an in vitro and in vivo study. Nutrition 19:794–799

    Article  PubMed  CAS  Google Scholar 

  8. Gupta SK, Srivastava S, Trivedi D, Joshi S, Halder N (2005) Ocimum sanctum modulates selenite-induced cataractogenic changes and prevents rat lens opacification. Curr Eye Res 30:583–591

    Article  PubMed  CAS  Google Scholar 

  9. Sakthivel M, Elanchezhian R, Ramesh E, Isai M, Nelson Jesudasan C, Thomas PA, Geraldine P (2008) Prevention of selenite-induced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Exp Eye Res 86:251–259

    Article  PubMed  CAS  Google Scholar 

  10. Lija Y, Biju PG, Reeni A, Cibin TR, Sahasranamam V, Abraham A (2006) Modulation of selenite cataract by the flavonoid fraction of Emilia sonchifolia in experimental animal models. Phytoher Res 20:1091–1095

    Article  CAS  Google Scholar 

  11. Biju PG, Rooban BN, Lija Y, Gayathri Devi V, Sahasranamam V, Annie A (2007) Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens. Mol Vis 13:1121–1129

    PubMed  CAS  Google Scholar 

  12. Dharmasiri MG, Jayakody AC Jr, Galhena G, Liyanage SSP, Ratnasooriya WD (2003) Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. J Ethnopharmacol 87:199–206

    Article  PubMed  CAS  Google Scholar 

  13. Hiraoka T, Clark JI (1995) Inhibition of lens opacification during the early stages of cataract formation. Invest Ophthalmol Vis Sci 36:2550–2555

    PubMed  CAS  Google Scholar 

  14. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  15. Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in Enzymology. Academic, New York, Vol. 105, pp 121–126

    Google Scholar 

  16. Rorive G, Kleinzeller A (1974) Ca2+-activated ATPase from renal tubular cells. In: Packer L (ed) Methods In Enzymology. Academic, New York, vol 32, pp 303–306

    Google Scholar 

  17. Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93(10):5116–5121

    Article  PubMed  CAS  Google Scholar 

  18. Niehaus WG Jr, Samuelsson B (1968) Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Article  PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  20. Steel RGD, Torrie JH, Dickey DA (1996) Principles and procedures of statistics. McGraw Hill, New York

    Google Scholar 

  21. Ohia SE, Opere CA, LeDay AM (2005) Pharmacological consequences of oxidative stress in ocular tissues. Mut Res 579:22–36

    CAS  Google Scholar 

  22. Varma SD, Chand D, Sharma YR, Kuck JF Jr, Richards RD (1984) Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res 3:35–57

    Article  PubMed  CAS  Google Scholar 

  23. Ganea E, Harding JJ (2006) Glutathione-related enzymes and the eye. Curr Eye Res 31:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Geraldine P, Brijit Sneha B, Elanchezhian R, Ramesh E, Kalavathy CM, Kaliamurthy J, Thomas PA (2006) Prevention of selenite induced cataractogenesis by acetyl-L-carnitine: an experimental study. Exp Eye Res 83:1340–1349

    Article  PubMed  CAS  Google Scholar 

  25. Liu L, Paterson CA, Borchman D (2002) Regulation of Sarco/Endoplasmic Ca2+-ATPase expression by calcium in human lens cells. Exp Eye Res 5:583–590

    Article  Google Scholar 

  26. Ahuja RP, Borchman D, Dean WL, Paterson CA, Zeng J, Zhang Z, Yankey FS, Yappert MC (1999) Effect of oxidation on Ca2+-ATPase activity and membrane lipids in lens epithelial microsomes. Free Radic Biol Med 27:177–185

    Article  PubMed  CAS  Google Scholar 

  27. Elanchezhian R, Sakthivel M, Geraldine P, Thomas PA (2009) The effect of acetyl-L-carnitine on lenticular calpain activity in prevention of selenite-induced cataractogenesis. Exp Eye Res 88:938–944

    Article  PubMed  CAS  Google Scholar 

  28. Varma SD, Hegde KR (2004) Effect of alpha-ketoglutarate against selenite cataract formation. Exp Eye Res 79:913–918

    Article  PubMed  CAS  Google Scholar 

  29. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4 hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  30. Awasthi S, Srivastava SK, Piper JT, Singhal SS, Chaubey M, Awasthi YC (1996) Curcumin protects against 4-hydroxy-2-noneal induced cataract. Am J Cli Nutr 64:761–766

    CAS  Google Scholar 

  31. Elanchezhian R, Ramesh E, Sakthivel M, Isai M, Geraldine P, Rajamohan M, Nelson Jesudasan C, Thomas PA (2007) Acetyl-L-carnitine prevents selenite-induced cataractogenesis in an experimental animal model. Curr Eye Res 32:961–971

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial assistance from Kerala State Council for Science Technology and Environment (KSCSTE), Government of Kerala, India, as a research grant (Order No. (T) 17/R&D augmentation/04/KSCSTE, dated 20-2-2004) to Dr. Annie Abraham. Authentication of the plant material by Mrs. Gayathri Devi. V, Scientist, Regional Research Institute, Poojapura, Trivandrum, Kerala, India is duly acknowledged. Junior research fellowship to Ms. Sasikala V from CSIR, New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooban, B.N., Sasikala, V., Sahasranamam, V. et al. Vitex negundo Modulates Selenite-Induced Opacification and Cataractogensis in Rat Pups. Biol Trace Elem Res 138, 282–292 (2010). https://doi.org/10.1007/s12011-010-8633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8633-1

Keywords

Navigation