Skip to main content

Advertisement

Log in

Iodine, Selenium, and Other Trace Elements in Urine of Pregnant Women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this work was to determine trace element levels in urine and evaluate possible associations between urinary iodine concentration (UIC), other trace elements (Cr, Cu, Fe, Mn, Na, Se, Zn), toxic elements (Cd, Pb), anthropometrical measures (body weight and height), glycemic indices (serum insulin and glucose), and several parameters related to thyroid function (thyroid stimulating hormone, free thyroxine, antithyroid peroxidase antibodies, thyroid volume, and thyroid echogenicity) in pregnant women. One hundred sixty-nine participants were recruited. The whole study group, originating from Krakow region, comprised three subgroups belonging to three trimesters: I trimester (n = 28), II trimester (n = 83), and III trimester (n = 58). Trace elements were determined using inductively coupled plasma mass/(atomic emission) spectrometry. Partial least square model was used to reveal correlation structure between parameters investigated, as well as a possible causal relationship between dependent parameters and potentially explanatory parameters. Results obtained for trace and toxic elements in urine were comparable with results of other authors, although the study group was not homogenous. We confirmed (1) low iodine excretion in pregnant women, (2) the existence of statistically significant correlation between UIC and urinary selenium, and (3) lack of correlation between latter parameter and typical indices of thyroid function. Urinary selenium correlated with other urinary trace elements, but physiological significance of this finding remains uncertain. The fact that a large number of pregnant women fail to meet dietary recommendations for iodine is the major reason for concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ICCIDD/UNCF/WHO (2001) Assessment of iodine deficiency disorders and monitoring their elimination. A guide for programme managers, 2nd edn

  2. Zeiner M, Ovari M, Zaray GY, Steffan I (2004) Reference concentrations of trace elements in urine of the Budapestian population. Biol Trace Element Res 101:107–115

    Article  CAS  Google Scholar 

  3. De Boer JL, Ritsema R, Piso S, Van Staden H, Van del Beld W (2004) Practical and quality-control aspects of multi-element analysis with quadrupole ICP-MS with special attention to urine and whole blood. Anal Bioanal Chem 379:872–880

    Article  PubMed  Google Scholar 

  4. Becker JS (2007) Inorganic mass spectrometry, principles and applications. Wiley, Chichester

    Google Scholar 

  5. Wang J, Hansen EH, Gammelgaard B (2001) Flow injection on-line dilution for multi-element determination in humane urine with detection by inductively coupled plasma mass spectrometry. Talanta 55:117–126

    Article  CAS  PubMed  Google Scholar 

  6. Thermo Electron Corporation, Application Note: AN_EO601, X Series ICP-MS Clinical Application Note 1: Rapid and accurate measurement of As and Cr in urine

  7. Sandell EB, Kolthoff IM (1937) Microdetermination of iodine by a catalytic method. Mikrochim Acta 1:9–25

    Article  CAS  Google Scholar 

  8. Pino S, Fang SL, Braverman LE (1996) Ammonium persulfate: a safe alternative oxidizing reagent for measuring urinary iodine. Clin Chem 42:239–243

    CAS  PubMed  Google Scholar 

  9. WHO Expert Committee on Diabetes Melitus: Diabetes Melitus. Geneva, World Health Organization 1985 (Tech. Rep. Ser. No. 727)

  10. Yokoyama H, Emoto M, Fujiwara S, Motoyama K, Morioka T, Komatsu M, Tahara H, Koyama H, Shoji T, Inaba M, Nishizawa Y (2004) Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment are useful indexes of insulin resistance in type 2 diabetic patients with wide range of fasting plasma glucose. J Clin Endocrinol Metab 89:1481–1484

    Article  CAS  PubMed  Google Scholar 

  11. Ferrara CM, Goldberg AP (2001) Limited value of the homeostasis model assessment to predict insulin resistance in older men with impaired glucose tolerance. Diabetes Care 24:245–249

    Article  CAS  PubMed  Google Scholar 

  12. Clementi S, Cruciani G, Curti G (1986) Some applications of the partial least-squares method. Anal Chim Acta 191:149–160

    Article  CAS  Google Scholar 

  13. Boulesteix AL, Strimmer K (2007) Partial Least Squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform 8:32–44

    Article  CAS  PubMed  Google Scholar 

  14. Singh KP, Malik A, Basant N, Saxena P (2007) Multi-way partial least squares modeling of water quality data. Anal Chim Acta 584:385–396

    Article  CAS  PubMed  Google Scholar 

  15. Ozcimen EE, Uckuyu A, Ciftci FC, Yanik FF, Bakar C (2008) Diagnosis of gestational diabetes mellitus by use of the homeostasis model assessment-insulin resistance index in the first trimester. Gynecol Endocrinol 24:224–229

    Article  CAS  PubMed  Google Scholar 

  16. Gutekunst R, Martin-Teichert H (1993) Requirements for goiter surveys and the determination of thyroid size. In: Delange F, Dunn JT, Glinoer D (eds) Iodine deficiency in Europe. A continuing concern. Plenum Press, New York, pp 109–115

    Google Scholar 

  17. Heitland P, Köster HD (2006) Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta 365:310–318

    Article  CAS  PubMed  Google Scholar 

  18. Rodushkin I, Ödman F (2001) Application of inductively coupled plasma sector field mass spectrometry for elemental analysis of urine. J Trace Elem Med Biol 14:241–247

    Article  CAS  PubMed  Google Scholar 

  19. Rasmussen LB, Ovesen L, Christiansen E (1999) Day-to-day and within-day variation in urinary iodine excretion. Eur J Clin Nutr 53:401–407

    Article  CAS  PubMed  Google Scholar 

  20. Delange F (2007) Iodine requirements during pregnancy, lactation and the neonatal period and indicators of optimal iodine nutrition. Public Health Nutr 10:1571–1580

    Article  PubMed  Google Scholar 

  21. Szybiński Z (2005) Iodine deficiency in pregnancy - a continuing public health problem. Endokrynol Pol 56:65–71 (in Polish)

    PubMed  Google Scholar 

  22. Nève J (1991) Methods in determination of selenium status. J Trace Elem Electrolytes Health Dis 5:1–17

    PubMed  Google Scholar 

  23. Lombeck I, Menzel H, Manz F, Mostert V (1997) Urinary selenium excretion as indicator of selenium status. In: Fischer PWF, Abbé MRL, Cockell KA, Gibson RS (eds) Proceedings of the Ninth International Symposium on Trace Eelements in Man and Animals. NRC Research Press, Ottawa, pp 115–117

    Google Scholar 

  24. Kvicala J, Zamrazil V, Soutorova M et al (1995) Correlations between parameters of body selenium status and peripheral thyroid parameters in the low selenium region. Analyst 120:959–965

    Article  CAS  PubMed  Google Scholar 

  25. Thomson CD, Packer MA, Butler JA et al (2001) Urinary selenium and iodine during pregnancy and lactation. J Trace Elem Med Biol 14:210–217

    Article  CAS  PubMed  Google Scholar 

  26. Oster O, Prellwitz W (1990) The renal excretion of selenium. Biol Trace Elem Res 24:119–146

    Article  CAS  PubMed  Google Scholar 

  27. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465

    Article  CAS  PubMed  Google Scholar 

  28. Köhrle J, Jakob F, Contempré B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  PubMed  Google Scholar 

  29. Bügel S, Sandström B, Skibsted LH (2004) Pork meat: a good source of selenium? J Trace Elem Med Biol 17:307–311

    Article  PubMed  Google Scholar 

  30. Griffiths NM, Thomson CD (1974) Selenium in whole blood of New Zealand residents. N Z Med J 80:199–202

    CAS  PubMed  Google Scholar 

  31. Rudolph N, Wong SL (1978) Selenium and glutathione peroxidase activity in maternal and cord plasma and red cells. Pediatr Res 12:789–792

    CAS  PubMed  Google Scholar 

  32. Behne D, Wolters W (1979) Selenium content and glutathione peroxidase activity in the plasma and erythrocytes of non-pregnant and pregnant women. J Clin Chem Clin Biochem 17:133–135

    CAS  PubMed  Google Scholar 

  33. Zachara BA, Wardak C, Didkowski W, Maciag A, Marchaluk E (1993) Changes in blood selenium and glutathione concentrations and glutathione peroxidase activity in human pregnancy. Gynecol Obstet Invest 35:12–17

    Article  CAS  PubMed  Google Scholar 

  34. Swanson CA, Reamer DC, Veillon C, King JC, Levander OA (1983) Quantitative and qualitative aspects of selenium utilization in pregnant and nonpregnant women: an application of stable isotope methodology. Am J Clin Nutr 38:169–180

    CAS  PubMed  Google Scholar 

  35. Francesconi KA, Pannier F (2004) Selenium metabolites in urine: a critical overview of past work and current status. Clin Chem 50:2240–2253

    Article  CAS  PubMed  Google Scholar 

  36. Zagrodzki P, Ratajczak R, Wietecha-Posłuszny R (2007) The interaction between selenium status, sex hormones, and thyroid metabolism in adolescent girls during the luteal phase of their menstrual cycle. Biol Trace Elem Res 120:51–60

    Article  CAS  PubMed  Google Scholar 

  37. Zagrodzki P, Ratajczak R (2008) Selenium status, sex hormones, and thyroid metabolism in young women. J Trace Elem Biol Med 22:296–304

    Article  CAS  Google Scholar 

  38. Naskalski JW, Drozdz R, Solnica B et al (2004) Analytical problems of iodine deficiency examination in Polish Nation-wide deficit control program. Przegl Lek 61:1325–1329 [in Polish]

    PubMed  Google Scholar 

  39. Bo S, Lezo A, Menato G (2005) Gestational hyperglycemia, zinc, selenium, and antioxidant vitamins. Nutrition 21:186–191

    Article  CAS  PubMed  Google Scholar 

  40. Cengiz B, Söylemez F, Oztürk E, Cavdar AO (2004) Serum zinc, selenium, copper, and lead levels in women with second-trimester induced abortion resulting from neural tube defects: a preliminary study. Biol Trace Elem Res 97:225–235

    Article  CAS  PubMed  Google Scholar 

  41. Jacob C, Maret W, Vallee BL (1998) Ebselen, a selenium-containing redox drug, releases zinc from metallothionein. Biochem Biophys Res Commun 248:569–573

    Article  CAS  PubMed  Google Scholar 

  42. Blessing H, Kraus S, Heindl P, Bal W, Hartwig A (2004) Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur J Biochem 271:3190–3199

    Article  CAS  PubMed  Google Scholar 

  43. Schrauzer GN (2006) Interactive Effects of selenium and chromium on mammary tumor development and growth in MMTV-infected female mice and their relevance to human cancer. Biol Trace Elem Res 109:281–292

    Article  CAS  PubMed  Google Scholar 

  44. Schrauzer GN, White DA, Schneider CJ (1977) Cancer mortaliy correlation studies. III. Statistical associations with dietary selenium intakes. Bioinorg Chem 7:23–34

    Article  CAS  PubMed  Google Scholar 

  45. Gerhardsson L, Brune D, Nordberg IG, Wester PO (1985) Protective effect of selenium on lung cancer in smelter workers. Br J Ind Med 42:617–626

    CAS  PubMed  Google Scholar 

  46. Gromadzińska J, Wasowicz W, Sklodowska M et al (1996) The influence of atmospheric chromium on selenium content and glutathione peroxidase activity in blood of tannery workers. Environ Health Perspect 104:1312–1316

    Article  PubMed  Google Scholar 

  47. Siddiqui MK, Jyoti SS et al (2006) Comparison of some trace elements concentration in blood, tumor free breast and tumor tissues of women with benign and malignant breast lesions: an Indian study. Environ Int 32:630–637

    Article  CAS  PubMed  Google Scholar 

  48. Schrauzer GN (2009) Selenium and selenium-antagonistic elements in nutritional cancer prevention. Crit Rev Biotechnol 29:10–17

    Article  CAS  PubMed  Google Scholar 

  49. Voldner N, Qvigstad E, Frøslie KF et al (2009) Increased risk of macrosomia among overweight women with high gestational rise in fasting glucose. J Matern Fetal Neonatal Med 16:1–8

    Article  Google Scholar 

  50. Hincz P, Borowski D, Krekora M et al (2009) Maternal obesity as a perinatal risk factor. Ginekol Pol 80:334–337

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Zagrodzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szybiński, Z., Walas, S., Zagrodzki, P. et al. Iodine, Selenium, and Other Trace Elements in Urine of Pregnant Women. Biol Trace Elem Res 138, 28–41 (2010). https://doi.org/10.1007/s12011-009-8601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8601-9

Keywords

Navigation