Skip to main content
Log in

Developmental Iodine Deficiency and Hypothyroidism Reduce Phosphorylation of Calcium/Calmodulin-Dependent Kinase II in the Rat Entorhinal Cortex

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodine is essential for the synthesis of triiodothyronine (T3) and thyroxine (T4). Iodine deficiency leads to inadequate thyroid hormone. Hypothyroidism induced by iodine deficiency during gestation and postnatal period leads to cognitive deficits in learning and memory. However, the mechanism underlying these deficits is unclear. Calcium-dependent calmodulin kinase II (CaMKII) known as a potential memory molecule regulates important neuronal functions including learning and memory. Recent studies have shown that hypothyroidism alters phosphorylation of CaMKII in hippocampus or even in sympathetic ganglia of rats. Though the entorhinal cortex (EC) is an important functional structure within the neuronal network responsible for learning and memory, little is known about the effect of hypothyroidism on phosphorylation of CaMKII in the EC. Here, we report that iodine deficiency and propylthiouracil treatment through gestation and lactation reduce phosphorylation of CaMKII in the EC of pups. The increase of calcineurin, as well as reduction of neurogranin and calmodulin, may account for the reduced phosphorylation of CaMKII induced by developmental iodine deficiency and hypothyroidism. These findings in the EC may contribute to understanding the mechanisms that underlie impairment of learning and memory induced by developmental iodine deficiency and hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martinez-Galan JR, Pedraza P, Santacana M, Escobar del Rey F, Morreale de Escobar G, Ruiz-Marcos A (1997) Myelin basic protein immunoreactivity in the internal capsule of neonates from rats on a low iodine intake or on methylmercaptoimidazole (MMI). Brain Res Dev Brain Res 101:249–256

    Article  CAS  PubMed  Google Scholar 

  2. Sui L, Gilbert ME (2003) Pre- and postnatal propylthiouracil-induced hypothyroidism impairs synaptic transmission and plasticity in area CA1 of the neonatal rat hippocampus. Endocrinology 144:4195–4203

    Article  CAS  PubMed  Google Scholar 

  3. Kibirige MS, Hutchison S, Owen CJ, Delces HT (2004) Prevalence of maternal dietary iodine insufficiency in the north east of England: implications for the fetus. Arch Dis Child Fetal Neonatal Ed 89:F436–F439

    Article  CAS  PubMed  Google Scholar 

  4. Berbel P, Obregon MJ, Bernal J, Escobar del Rey F, Morreale de Escobar G (2007) Iodine supplementation during pregnancy: a public health challenge. Trends Endocrinol Metab 18:338–343

    Article  CAS  PubMed  Google Scholar 

  5. Tang Z, Liu W, Yin H, Wang P, Dong J, Wang Y, Chen J (2007) Investigation of intelligence quotient and psychomotor development in schoolchildren in areas with different degrees of iodine deficiency. Asia Pac J Clin Nutr 16:731–737

    PubMed  Google Scholar 

  6. Dussault JH, Ruel J (1987) Thyroid hormones and brain development. Annu Rev Physiol 49:321–334

    Article  CAS  PubMed  Google Scholar 

  7. Yasuda M, Mayford MR (2006) CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory. Neuron 50:309–318

    Article  CAS  PubMed  Google Scholar 

  8. Majchrzak M, Ferry B, Marchand AR, Herbeaux K, Seillier A, Barbelivien A (2006) Entorhinal cortex lesions disrupt fear conditioning to background context but spare fear conditioning to a tone in the rat. Hippocampus 16:114–124

    Article  CAS  PubMed  Google Scholar 

  9. Harich S, Kinfe T, Koch M, Schwabe K (2008) Neonatal lesions of the entorhinal cortex induce long-term changes of limbic brain regions and maze learning deficits in adult rats. Neuroscience 153:918–928

    Article  CAS  PubMed  Google Scholar 

  10. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 16:4491–4500

    CAS  PubMed  Google Scholar 

  11. Diekmann S, Nitsch R, Ohm TG (1994) The organotypic entorhinal-hippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders. J Neural Transm Suppl 44:61–71

    CAS  PubMed  Google Scholar 

  12. Lippa CF, Hamos JE, Pulaski-Salo D, DeGennaro LJ, Drachman DA (1992) Alzheimer's disease and aging: effects on perforant pathway perikarya and synapses. Neurobiol Aging 13:405–411

    Article  CAS  PubMed  Google Scholar 

  13. Zhou W, Jiang D, Raisman G, Zhou C (1998) Embryonic entorhinal transplants partially ameliorate the deficits in spatial memory in adult rats with entorhinal cortex lesions. Brain Res 792:97–104

    Article  CAS  PubMed  Google Scholar 

  14. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28:1342–1354

    Article  CAS  PubMed  Google Scholar 

  15. Limback-Stokin K, Korzus E, Nagaoka-Yasuda R, Mayford M (2004) Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci 24:10858–10867

    Article  PubMed  Google Scholar 

  16. Ran X, Miao HH, Sheu FS, Yang D (2003) Structural and dynamic characterization of a neuron-specific protein kinase C substrate, neurogranin. Biochemistry 42:5143–5150

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Huang KP, Huang FL (2003) Participation of NMDA-mediate phosphorylation and oxidation of neurogranin in the regulation of Ca2+ and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus. J Neurochem 86:1524–1533

    Article  CAS  PubMed  Google Scholar 

  18. Mansuy IM (2003) Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun 311:1195–1208

    Article  CAS  PubMed  Google Scholar 

  19. Gerges NZ, Alzoubi KH, Alkadhi KA (2005) Role of phosphorylated CaMKII and calcineurin in the differential effect of hypothyroidism on LTP of CA1 and dentate gyrus. Hippocampus 15:480–490

    Article  CAS  PubMed  Google Scholar 

  20. Alzoubi KH, Bedawi AS, Aleisa AM, Alkadhi KA (2004) Hypothyroidism impairs long-term potentiation in sympathetic ganglia: electrophysiologic and molecular studies. J Neurosci Res 78:393–402

    Article  CAS  PubMed  Google Scholar 

  21. Alzoubi KH, Gerges NZ, Alkadhi KA (2005) Levothyroxin restores hypothyroidism-induced impairment of LTP of hippocampal CA1: electrophysiological and molecular studies. Exp Neurol 195:330–341

    Article  CAS  PubMed  Google Scholar 

  22. Alzoubi KH, Aleisa AM, Alkadhi KA (2006) Molecular studies on the protective effect of nicotine in adult-onset hypothyroidism-induced impairment of long-term potentiation. Hippocampus 16:861–874

    Article  CAS  PubMed  Google Scholar 

  23. Dong J, Yin H, Liu W, Wang P, Jiang Y, Chen J (2005) Congenital iodine deficiency and hypothyroidism impair LTP and decrease c-fos and c-jun expression in rat hippocampus. Neurotoxicology 26:417–426

    Article  CAS  PubMed  Google Scholar 

  24. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Wong CC, Leung MS (2001) Effects of neonatal hypothyroidism on the expressions of growth cone proteins and axon guidance molecules related genes in the hippocampus. Mol Cell Endocrinol 184:143–150

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Yang C, Han S, Zu P, Wu J, Xu Q, Fang L (2006) Increased phosphorylation of neurogranin in the brain of hypoxic preconditioned mice. Neurosci Lett 391:150–153

    Article  CAS  PubMed  Google Scholar 

  27. Colbran RJ (1992) Regulation and role of brain calcium/calmodulin-dependent protein kinase II. Neurochem Int 21:469–497

    Article  CAS  PubMed  Google Scholar 

  28. D'Alcantara P, Schiffmann SN, Swillens S (2003) Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways. Eur J NeuroSci 17:2521–2528

    Article  PubMed  Google Scholar 

  29. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510

    Article  CAS  PubMed  Google Scholar 

  30. Sethi V, Kapil U (2004) Iodine deficiency and development of brain. Indian J Pediatr 71:325–329

    Article  PubMed  Google Scholar 

  31. Hetzel BS (2000) Iodine and neuropsychological development. J Nutr 130:493S–495S

    CAS  PubMed  Google Scholar 

  32. Zoeller RT, Rover J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16:809–818

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi K, Tsuji R, Yoshioka T, Kushida M, Yabushita S, Sasaki M, Mino T, Seki T (2005) Effects of hypothyroidism induced by perinatal exposure to PTU on rat behavior and synaptic gene expression. Toxicology 212:135–147

    Article  CAS  PubMed  Google Scholar 

  34. Calloni GW, Penno CA, Cordova FM, Trentin AG, Neto VM, Leal RB (2005) Congenital hypothyroidism alters the phosphorylation of ERK1/2 and p38MAPK in the hippocampus of neonatal rats. Brain Res Dev Brain Res 154:141–145

    Article  CAS  PubMed  Google Scholar 

  35. Sui L, Anderson WL, Gilbert ME (2005) Impairment in short-term but enhanced long-term synaptic potentiation and ERK activation in adult hippocampal area CA1 following developmental thyroid hormone insufficiency. Toxicol Sci 85:647–656

    Article  CAS  PubMed  Google Scholar 

  36. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    Article  CAS  PubMed  Google Scholar 

  37. Cammarota M, Bevilaqua LR, Viola H, Kerr DS, Reichmann B, Teixeira V, Bulla M, Izquierdo I, Medina JH (2002) Participation of CaMKII in neuronal plasticity and memory formation. Cell Mol Neurobiol 22:259–267

    Article  CAS  PubMed  Google Scholar 

  38. Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100:433–442

    Article  CAS  PubMed  Google Scholar 

  39. Iniguez MA, De Lecea L, Guadano-Ferraz A, Morte B, Gerendasy D, Sutcliffe JG, Bernal J (1996) Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain. Endocrinology 137:1032–1041

    Article  CAS  PubMed  Google Scholar 

  40. Iniguez MA, Rodriguez-Pena A, Ibarrola N, Aguilera M, Munoz A, Bernal J (1993) Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate. Endocrinology 133:467–473

    Article  CAS  PubMed  Google Scholar 

  41. Martinez de Arrieta C, Morte B, Coloma A, Bernal J (1999) The human RC3 gene homolog, NRGN contains a thyroid hormone-responsive element located in the first intron. Endocrinology 140:335–343

    Article  CAS  PubMed  Google Scholar 

  42. Dineley KT, Hogan D, Zhang WR, Taglialatela G (2007) Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem 88:217–224

    Article  CAS  PubMed  Google Scholar 

  43. Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92:39–49

    Article  CAS  PubMed  Google Scholar 

  44. Mansuy IM, Winder DG, Moallem TM, Osman M, Mayford M, Hawkins RD, Kandel ER (1998) Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21:257–265

    Article  CAS  PubMed  Google Scholar 

  45. Malleret G, Haditsch U, Genoux D, Jones MW, Bliss TV, Vanhoose AM, Weitlauf C, Kandel ER, Winder DG, Mansuy IM (2001) Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104:675–686

    CAS  PubMed  Google Scholar 

  46. Wen Z, Guirland C, Ming GL, Zheng JQ (2004) A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance. Neuron 43:835–846

    Article  CAS  PubMed  Google Scholar 

  47. Kazi TG, Kandhro GA, Afridi HI, Kazi N, Baig JA, Arain MB, Shah AQ, Syed N, Kumar S, Kolachi NF, Khan S (2009) Interaction of copper with iron, iodine, and thyroid hormone status in goitrous patients. Biol Trace Elem Res. doi:10.1007/s12011-009-8478-7

    Google Scholar 

  48. Shrader RE, Keen CL, Hurley LS, Zeman FJ (1982) Hematologic and trace element alterations following chronic maternal ingestion of propylthiourea. Exp Hematol 10:44–55

    CAS  PubMed  Google Scholar 

  49. Gonzalez-Reimers E, Santolaria-Fernandez F, Perez-Labajos J, Rodriguez-Moreno F, Martinez-Riera A, Hernandez-Torres O, Valladares-Parrilla F, Molina-Perez M (1996) Relative and combined effects of propylthiouracil, ethanol and protein deficiency on liver histology and hepatic iron, zinc, manganese and copper contents. Alcohol Alcohol 31:535–545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant number 30500400 and 30800896] and also supported by Natural Science Foundation of Liaoning Province, China for PhD holders [grant number 20081053]. We thank Prof. Hong Lai from the Department of Anatomy College of Basic Medical Sciences at China Medical University for her excellent technical assistance with the experiments of rat brain anatomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Hou, Y., Dong, J. et al. Developmental Iodine Deficiency and Hypothyroidism Reduce Phosphorylation of Calcium/Calmodulin-Dependent Kinase II in the Rat Entorhinal Cortex. Biol Trace Elem Res 137, 353–363 (2010). https://doi.org/10.1007/s12011-009-8591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8591-7

Keywords

Navigation