Skip to main content

Advertisement

Log in

Serum Levels of Cu, Se, and Zn in Adult Rural/Urban Residents in Ghana: Paradigm Shift?

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Deficiencies in Cu, Se, and Zn impair one or more biochemical functions, and excess are associated with toxicity. Baseline studies on the Ghanaian population are scanty. The study was undertaken to determine whether significant rural/urban differences in the serum levels of Cu, Se, and Zn did exist. Forty males/60 females from rural and 50 males/50 females from urban Ghanaian communities were sampled. Serum Cu, Se, and Zn were determined using flame atomic absorption spectrometry. Cu level for rural and urban subjects was 997 ± 333 and 979 ± 290 μg/L, respectively (p = 0.68). However, Cu levels were significantly higher in the rural females (1,063 ± 367 μg/L) than the rural males (898 ± 249 μg/L; p = 0.0085). Se levels for rural/urban subjects were 97 ± 36 and 87 ± 31 μg/L, respectively (p = 0.03). Zn levels in the rural/urban subjects were 312 ± 218 and 150 ± 102 μg/L, respectively (p = 0.002). Additionally, Zn was significantly higher in rural females (428 ± 204 μg/L) than the urban females (166 ± 103 μg/L; p = 0.0002). Finally, Zn was significantly higher in rural females (428 ± 204 μg/L) than males (172 ± 116 μg/L; p = 0.0028). In conclusion, Cu, Se, and Zn were higher in the rural group compared to the urban group, and the generally low Zn levels were confirmed in another cohort follow-up study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO (2006) Preventing and controlling micronutrient deficiencies in populations affected by emergency, WHO, WFP, http://www.unicef.org/nutrition/files/Joint_Statement_Micronutrients GOOGLE. Accessed on 9 Sept 2009

  2. UNICEF (2006) Iodine Deficiency Disorders (IDD) Available via GOOGLE http://childinfo.org/areas/idd/. Accessed on 9 Sept 2009

  3. Ramakrishnan U (2002) Prevalence of micronutrient malnutrition worldwide. Nutr Rev 60(5 Pt 2):S46–S52

    Article  PubMed  Google Scholar 

  4. Black R (2003) Micronutrient deficiency—an underlying cause of morbidity and mortality. Bull World Health Organ 81(2):79

    PubMed  Google Scholar 

  5. Black MM (2003) Micronutrient deficiencies and cognitive functioning. J Nutr 133(11 Suppl 2):3927S–3931S

    CAS  PubMed  Google Scholar 

  6. de Onis M, Blössner M (2003) The world health organization global database on child growth and malnutrition: methodology and applications. Int J Epidemiol 32:518–526

    Article  PubMed  Google Scholar 

  7. Folin M, Contiero E, Vaselli GM (1994) Zinc content of normal human serum and its correlation with some hematic parameters. Biometals 7:75–79

    Article  CAS  PubMed  Google Scholar 

  8. Rivera DJ, Shamah LT, Villalpando HS, Gonzáles CT, Hernández PB, Sepúlveda J (2001). In: Encuesta Nacional de Nutrición 1999. Estado nutricio del niño y mujer en México, 1 ed. Cuernavaca, Morelos, México

  9. Gibson RS, Huddle JM (1998) Suboptimal zinc status in pregnant Malawian women: its association with low intakes of poorly available zinc, frequent reproductive cycling, and malaria. Am J Clin Nutr 67:702–709

    CAS  PubMed  Google Scholar 

  10. Thu BD, Schultink W, Dillon D et al (1999) Effect of daily and weekly micronutrient supplementation on micronutrient deficiencies and growth in young Vietnamese children. Am J Clin Nutr 69:80–86

    CAS  PubMed  Google Scholar 

  11. Singh A, Smoak BL, Patterson KY et al (1991) Biochemical indices of selected trace minerals in men: effect of stress. Am J Clin Nutr 53:126–131

    CAS  PubMed  Google Scholar 

  12. Schroeder JJ, Cousins RJ (1990) Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures. Proc Natl Acad Sci U S A 87:3137–3141

    Article  CAS  PubMed  Google Scholar 

  13. Rofe AM, Philcox JC, Coyle P (1996) Trace metal, acute phase and metabolic response to endotoxin in metallothionein-null mice. Biochem J 314:793–797

    CAS  PubMed  Google Scholar 

  14. Prasad AS (1985) Laboratory diagnosis of zinc deficiency. J Am Coll Nutr 4:591–598

    CAS  PubMed  Google Scholar 

  15. Solomons NW (1979) On the assessment of zinc and copper nutriture in man. Am J Clin Nutr 32:856–871

    CAS  PubMed  Google Scholar 

  16. Halsted JA, Hackley BM, Smith JC Jr (1968) Plasma-zinc and copper in pregnancy and after oral contraceptives. Lancet 2:278–279

    Article  CAS  PubMed  Google Scholar 

  17. Hobisch-Hagen P (2002) Hemodilution and coagulation. An overview. Minerva Anestesiol 68(4):178–181

    CAS  PubMed  Google Scholar 

  18. Yaman M, Atici D, Bakırdere S, Akdeniz I (2005) Comparison of trace metal concentrations in malign and benign human prostate. J Med Chem 48:630–634

    Article  CAS  PubMed  Google Scholar 

  19. Fukuda H, Ebara M, Yamada H et al (2004) Trace elements and cancer. J Jpn Med Assoc 47:391–395

    Google Scholar 

  20. Bettger WJ, Fish TJ, O’Dell BL (1978) Effect of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity. Proc Soc Biol Med 158:279

    CAS  Google Scholar 

  21. Mier-Cabrera J, Aburto-Soto T, Burrola-Méndez S (2009) Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod Biol Endocrinol 28:7–54

    Google Scholar 

  22. Klotz LO, Kröncke KD, Buchczyk DP, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133(5 Suppl 1):1448S–1451S

    CAS  PubMed  Google Scholar 

  23. Fujs S, Gazdag Z, Poljsak B et al (2005) The oxidative stress response of the yeast Candida intermedia to copper, zinc, and selenium exposure. J Basic Microbiol 45(2):125–135

    Article  CAS  PubMed  Google Scholar 

  24. Hsu JM (1980) In Karcioglu ZA, Sarper RM (1980) (eds) Zinc and Copper in Medicine. Springfield, Charles C. Thomas, pp. 66–93

  25. Mason KE (1979) A conspectus of research on copper metabolism and requirements of man. J Nutr 109(11):1979–2066

    CAS  PubMed  Google Scholar 

  26. Bremner I (1980) Absorption, transport and distribution of copper. Ciba Found Symp 79:23–48

    CAS  PubMed  Google Scholar 

  27. Burch RE, Hahn HK, Sullivan JF (1975) Newer aspects of the roles of zinc, manganese and copper in human nutrition. Clin Chem 21:501–520

    CAS  PubMed  Google Scholar 

  28. O’Dell BL, Hardwick BC, Reynolds G, Savage JE (1961) Connective tissue defect in the chick resulting from copper deficiency. Proc Soc Exp Biol Med 108:402–406

    PubMed  Google Scholar 

  29. Shields GS, Coulson WF, Kimball DA (1962) Studies on copper metabolism. XXXII. Cardiovascular lesions in copper deficient swine. Am J Pathol 41:603–617

    CAS  PubMed  Google Scholar 

  30. Daniel KG, Harbach RH, Guida WC, Dou QP (2004) Copper storage diseases: Menkes, Wilson's and cancer. Front Biosci 9:2652–2662

    Article  CAS  PubMed  Google Scholar 

  31. McKeehan WL, Hamilton WG, Ham RG (1976) Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci U S A 73(6):2023–2027

    Article  CAS  PubMed  Google Scholar 

  32. Janet YUA, Carl LK (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26:268–298

    Article  Google Scholar 

  33. Rotruck JJ, Pope AL, Ganther HE (1973) Selenium: Biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  34. Awasthi YC, Bentler E, Srivastava SK (1975) Purification and properties of human erythrocyte glutathione peroxidase. J Biol Chem 250:5144–5149

    CAS  PubMed  Google Scholar 

  35. Schrauzer GN (1984) Selenium in nutritional cancer prophylaxis: an update. In: Prasad AS (ed) Vitamins, nutrition and cancer. Basel, Karger, pp 240–250

    Google Scholar 

  36. Hoekstra EG (1975) Biochemical function of selenium and its relation to vitamin E. Fed Proc 34:2083–2089

    CAS  PubMed  Google Scholar 

  37. Torun M, Aldemir H, Yardim S (1995) Serum selenium levels in various cancer types. Trace Elem Electrolytes 12:186–190

    Google Scholar 

  38. Luty-Frackiewicz A (2005) The role of selenium in cancer and viral infection prevention. Int J Occup Med Environ Health 18:305–311

    PubMed  Google Scholar 

  39. Bulkley GB (1983) The role of free radicals in human diseases. Surgery 94:407–411

    CAS  PubMed  Google Scholar 

  40. Al-Awadi FM, Khan I, Dashti HM, Srikumar T (1997) Colitis-induced changes in the level of trace elements in rat colon and other tissues. Ann Nutr Metab 42:304–310

    Article  Google Scholar 

  41. Hong-qun Z, Ning L, Zheng Z et al (2009) Serum zinc, copper, and zinc/copper in healthy residents of Jinan. Biol Trace Elem Res 131:25–32

    Article  Google Scholar 

  42. Ghayour-Mobarhan M, Shapouri-Moghaddam A, Azimi-Nezhad M et al (2009) The relationship between established coronary risk factors and serum copper and zinc concentrations in a large Persian cohort. J Trace Elem Med Biol 23(3):167–175

    Article  CAS  PubMed  Google Scholar 

  43. Kutlu T, Karagozler AA, Gozukara EM (2006) Relationship among placental cadmium, lead, zinc, and copper levels in smoking pregnant women. Biol Trace Elem Res 114(1–3):7–17

    Article  CAS  PubMed  Google Scholar 

  44. Yu-yan L, Wei-jin Z, Jun-qing W (2006) Contrast of serum trace elements in different age groups of male adults. Chin J Public Health Mar 22(3):277–279

    Google Scholar 

  45. Xing-quan H (1994) Determination of normal values of 6 kinds of human blood chemical in Tianjin area. Science of Trace Elements Guangdong 2(1):48–51

    Google Scholar 

  46. Torres MC, Navarro AM, Martin LF et al (1997) Determination of copper levels in serum of healthy subjects by atomic absorption spectrometry. Sci Total Environ 198:97–103

    Article  Google Scholar 

  47. Frimpong NA, Louis-Charles J (1989) Copper and zinc status in moderate alcohol intake. Adv Exp Med Biol 258:145–154

    CAS  PubMed  Google Scholar 

  48. Clarkson PM (1991) Minerals: exercise performance and supplementation in athletes. J Sports Sci 9 Spec No:91–116

    CAS  PubMed  Google Scholar 

  49. Montain SJ, Cheuvront SN, Lukaski HC (2007) Sweat mineral-element responses during 7 h of exercise-heat stress. Int J Sport Nutr Exerc Metab 17(6):574–582

    CAS  PubMed  Google Scholar 

  50. Bordin D, Sartorelli L, Bonanni G et al (1993) High intensity physical exercise induced effects on plasma levels of copper and zinc. Biol Trace Elem Res 36(2):129–134

    Article  CAS  PubMed  Google Scholar 

  51. Singh A, Deuster PA, Moser PB (1990) Zinc and copper status in women by physical activity and menstrual status. J Sports Med Phys Fitness 30(1):29–36

    CAS  PubMed  Google Scholar 

  52. Takyi EEK, Amankwa P (2004) East Afr Med J 81(1):34–39

    CAS  PubMed  Google Scholar 

  53. Finley JW (2006) Bioavailability of selenium from foods. Nutr Rev 64:146–151

    Article  PubMed  Google Scholar 

  54. Al-Sayer HA, Al-Bader M, Khoursheed S et al (2000) Serum values of copper, zinc and selenium in adults resident in Kuwait. Med Princ Pract 9:139–146

    Article  Google Scholar 

  55. Young-Jae K, Oyunbileg G, Jun HS et al (2009) Serum selenium level in healthy Koreans. Biol Trace Elem Res. doi:10.1007/s12011-009-8353-6

    Google Scholar 

  56. Kyung-Hee K, Hyeon-Sook K (2006) Dietary intakes, serum concentrations, and urinary excretions of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean young adult women. Korean J Nutr 39:762–772

    Google Scholar 

  57. Song SH, Song K, Lee SB, Kim CS (2006) The serum selenium level in Korean men and its association with age and prostate cancer. Korean J Urol 47:150–153

    Article  Google Scholar 

  58. Rayman MP (2000) The importance of selenium to human health. Lancet 15;356(9225):233–241

    Google Scholar 

  59. Kupka R, Msamanga GI, Spiegelman D et al (2004) Selenium status is associated with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. J Nutr 134(10):2556–2560

    CAS  PubMed  Google Scholar 

  60. Foster HD (2007) A role for the antioxidant defense system in preventing the transmission of HIV. Med Hypotheses 69(6):1277–1280

    Article  CAS  PubMed  Google Scholar 

  61. Nube and Voortman (2006) http://www.sow.vu.nl/pdf/wp06.02.pdf. Internet accessed on October 9, 2009

  62. Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  63. Cakmak I, Kalaycl M, Ekiz H et al (1999) Field Crops Research 60(no1-2):175–188

    Article  Google Scholar 

  64. Snapp SS (1998) Soil nutrient status of smallholder farms in Malawi. Commun Soil Sci Plant Anal 29:2571–2588

    Article  CAS  Google Scholar 

  65. Soumare M, Tack FMG, Verloo MG (2003) Distribution and availability of iron, manganese, zinc, and copper in four tropical agricultural soils. Commun Soil Sci Plant Anal 34:1023–1038

    Article  CAS  Google Scholar 

  66. van Asten PJA, van 't Zelfde JA, van der Zee SEATM, Hammecker C (2004) The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel. Geoderma 119(Issues 3-4):233–247

    Google Scholar 

  67. Sandström B (2001) Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr 85(Suppl 2):S181–S185

    Article  PubMed  Google Scholar 

  68. Kalis EJ, Temminghoff EJ, Weng L, van Riemsdijk WH (2006) Effects of humic acid and competing cations on metal uptake by Lolium perenne. Environ Toxicol Chem 25(3):702–711

    Article  CAS  PubMed  Google Scholar 

  69. Buerkert A, Moser M, Kumar AK et al (2001) Variation in grain quality of pearl millet from Sahelian West Africa. Field Crops Research 69:1–11

    Article  Google Scholar 

  70. Kennedy G, Burlinghame B (2003) Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem 80:589–596

    Article  CAS  Google Scholar 

  71. Hotz C, Brown KH (2004) Guest Editors, Assessment of the risk of zinc deficiency in populations and options for control, IZiNCG Technical Document 1, Food and Nutrition Bulletin 25, Supplement 2

  72. Galal OM (2000) Micronutrient deficiency conditions in the Middle East region: an overview. Public Health Review 28:1–12

    CAS  Google Scholar 

  73. Manary MJ, Hotz C, Krebs NF et al (2002) Zinc homeostasis in Malawian children consuming a high-phytate, maize-based diet. Am J Clin Nutr 75:1057–1061

    CAS  PubMed  Google Scholar 

  74. Yadav S, Khirwar SS (2000) Soil-plant-animal relationship of zinc in milch buffaloes of Jind district in Haryana. Indian J Anim Sci 70:965–967

    CAS  Google Scholar 

  75. Ndebele N, Mtimuni JP, Mpofu ID et al (2005) The status of selected minerals in soil, forage and beef cattle tissues in a semi-arid region of Zimbabwe. Trop Anim Health Prod 37:381–393

    Article  CAS  PubMed  Google Scholar 

  76. Voskaki I, Arvanitidou V, Athanasopoulou H et al. (2009) Serum copper and zinc levels in healthy Greek children and their parents. Biol Trace Elem Res. (in press) doi:10.1007/s12011-009-8571-y

Download references

Acknowledgment

The authors are grateful to Dr. Shiloh Osae of the Chemistry Department of the Ghana Atomic Energy Commission (GAEC) for allowing his equipment and facilities to be used for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Asare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asare, G.A., Nani, A. Serum Levels of Cu, Se, and Zn in Adult Rural/Urban Residents in Ghana: Paradigm Shift?. Biol Trace Elem Res 137, 139–149 (2010). https://doi.org/10.1007/s12011-009-8571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8571-y

Keywords

Navigation