Prophylactic Efficacy of Coriandrum sativum (Coriander) on Testis of Lead-Exposed Mice


Lead poisoning is a worldwide health problem, and its treatment is under investigation. The aim of this study was to access the efficacy of Coriandrum sativum (coriander) in reducing lead-induced changes in mice testis. Animal exposed to lead nitrate showed significant decrease in testicular SOD, CAT, GSH, total protein, and tissue lead level. This was accompanied by simultaneous increase in the activities of LPO, AST, ALT, ACP, ALP, and cholesterol level. Serum testosterone level and sperm density were suppressed in lead-treated group compared with the control. These influences of lead were prevented by concurrent daily administration of C. sativum extracts to some extent. Treating albino mice with lead-induced various histological changes in the testis and treatment with coriander led to an improvement in the histological testis picture. The results thus led us to conclude that administration of C. sativum significantly protects against lead-induced oxidative stress. Further work need to be done to isolate and purify the active principle involved in the antioxidant activity of this plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Sairam TV (1998) Home remedies: a handbook of herbal cures for common ailments. Penguin Books India, New Delhi, p 75

    Google Scholar 

  2. 2.

    Taniguchi M, Yanai M, Xiao YQ, Kido T, Baba K (1996) Three isocumarines from Coriandrum sativum. Phytochemistry 42:843

    Article  CAS  Google Scholar 

  3. 3.

    Burdock GA, Carabin IG (2008) Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food Chem Toxicol 47:22–34

    PubMed  Google Scholar 

  4. 4.

    Eidi M, Eidi A, Saeidi A, Molanaei S, Sadeghipour A, Bahar M, Bahar K (2009) Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 23(3):404–406

    Article  PubMed  Google Scholar 

  5. 5.

    Chithra V, Leelamma S (1999) Coriandrum sativum changes the levels of lipid peroxides and activity of antioxidant enzymes in experimental animals. Indian J Biochem Biophys 36:59–61

    CAS  PubMed  Google Scholar 

  6. 6.

    Chithra VV, Leelamma S (2000) Coriandrum sativum—effect on lipid metabolism in 1, 2-dimethyl hydrazine induced colon cancer. J Ethanopharmocol 17:457

    Article  Google Scholar 

  7. 7.

    Omura Y, Beckman SL (1995) Role of mercury in resistant infections and effective treatment of Chlamydia trachomatis and Herpes family viral infections (and potential treatment for cancer) by removing localized mercury deposits with Chinese parsley and delivering effective antibiotics using various drug uptake enhancement methods. Acupunct Electrother Res 20:195–229

    CAS  PubMed  Google Scholar 

  8. 8.

    Omura Y, Shimotsuura Y, Fukuoka A, Fukuoka H, Nomoto T (1996) Significant mercury deposits in internal organs following the removal of dental amalgam, and development of pre cancer on the gingival and the sides of the tongue and their represented organs as a result of inadvertent exposure to strong curing light (used to solidify synthetic dental filling material) of effective treatment: a clinical case report, along with organ representation areas for each tooth. Acupunct Electrother Res 21:133–160

    CAS  PubMed  Google Scholar 

  9. 9.

    Thomas JA, Brogan WC (1983) Some actions of lead on the sperm and on male reproductive system. Am J Ind Med 4:127–134

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Hilderbrand DC, Der R, Griffen WT, Fahim MS (1973) Effects of lead acetate on reproduction. Am J Obstet Gynecol 15:1558–1565

    Google Scholar 

  11. 11.

    Lancranjan I, Popescu HI, Gavanescu O, Klepsch I, Serbanescu M (1975) Reproductive ability of workmen occupationally exposed to lead. Arch Environ Health 39:431–440

    Google Scholar 

  12. 12.

    Ronis MJ, Badger TM, Shema SJ, Roberson PK, Shaikh F (1996) Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol 136:361–371

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Winder C (1989) Reproductive and chromosomal effects of occupational exposure to lead in the male. Reprod Toxicol 3:221–233

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Adhikari N, Sinha N, Narayan R, Saxena DK (2001) Lead induced cell death in testes of young rats. J Applied Toxicol 21:275–277

    Article  CAS  Google Scholar 

  15. 15.

    Batra N, Nehru B, Bansal MP (2001) Influence of lead and zinc on rat male reproduction at biochemical and histopathological levels. J Applied Toxicol 21:507–512

    Article  CAS  Google Scholar 

  16. 16.

    Boscolo P, Carmignani M, Sacchettoni-Logroscino G, Ranelletti FO, Artese L, Preziosi P (1988) Ultrastructure of testis in rats with blood hypertension induced by long-term lead exposure. Toxicol Lett 41:129–137

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Klein D, Wan YJ, Kamyab S, Okuda H, Sokol RZ (1994) Effects of toxic levels of lead on gene regulation in the male axis: increase in messenger ribonucleic acids and intracellular stores of gonadotrophs within the central nervous system. Biol Reprod 50:802–811

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Sokol RZ, Okuda H, Nagler HM, Berman N (1994) Lead exposure in vivo alters the fertility potential of sperm in vitro. Toxicol Appl Pharmacol 124:310–316

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med 29:927–945

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Wang HP, Qian SY, Schafer FQ, Domann FE, Oberley LW, Buettner GR (2000) Phospholipid hydroperoxide glutathione peroxidase protects against singlet oxygen-induced cell damage of photodynamic therapy. Free Radic Biol Med 30:825–835

    Article  Google Scholar 

  21. 21.

    Adonaylo VN, Oteiza PI (1999) Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology 135:77–85

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Mcgowan C, Donaldson WE (1986) Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks. Biol Trace Elem Res 10:37–46

    Article  CAS  Google Scholar 

  23. 23.

    Bechara EJ, Medeiros MH, Monteiro HP, Hermes-lima M, Pereira B, Demasi M (1993) A free 352 radical hypotheses of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overloads. Quim Nova 16:385–392

    CAS  Google Scholar 

  24. 24.

    Sugawara E, Nakamura K, Miyake T, Fukumura A, Seki Y (1991) Lipid peroxidation and concentration of glutathione in erythrocytes from workers exposed to lead. Br J Ind Med 48:239–242

    CAS  PubMed  Google Scholar 

  25. 25.

    Budvari S (1996) The Merck Index: an encyclopedia of chemicals, drugs, and biologics, 12th edn. Merck & Co Inc., Whitehouse Station, NJ

    Google Scholar 

  26. 26.

    Gray AM, Flatt PR (1999) Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Br J Nutr 81:203–209

    CAS  PubMed  Google Scholar 

  27. 27.

    Plastunov B, Zub S (2008) Lipid peroxidation processes and antioxidant defence under lead intoxication and iodine-deficient in experiment. An UMCS Pharmacia 21:215–217

    Article  Google Scholar 

  28. 28.

    Sushruta K, Satyanarayana S, Srinivas N, Raja Sekhar J (2006) Evaluation of the blood-glucose reducing effects of aqueous extracts of the selected Umbelliferous fruits used in culinary practies. Trop J Pharm Res 5(2):613–617

    Google Scholar 

  29. 29.

    Nwanjo HU, Ojiako OA (2005) Effect of vitamins E and C on exercise induced oxidative stress. Global J Pure Appl Sci 12:199–202

    Google Scholar 

  30. 30.

    Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the autooxidation of pyrogallol and convenient assay for SOD. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Aebi H (1983) Catalase. In: Bergmeyer H (ed) Methods in enzymatic analysis, Vol. 2. Academic, New York, pp 76–80

    Google Scholar 

  32. 32.

    Ellman GC (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Reitman S, Frankel AS (1957) A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Path 28:53–56

    Google Scholar 

  34. 34.

    Sadashivam S, Manickam A (1996) Biochemical methods, 2nd edn. New Age International (P) Publishers, New Delhi, India, pp. 121-124

  35. 35.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  36. 36.

    Zak B (1977) Cholesterol methodologies: a review. Clin Chem 23:1201–1214

    CAS  PubMed  Google Scholar 

  37. 37.

    Gupta P, Chaturvedi M (2000) Modern experimental Zoology book. Raj Publishing House, New Delhi, pp. 157

  38. 38.

    Aga M, Iwaki K, Ueda Y, Ushio S, Masaki N, Fukuda S, Kimoto T, Ikeda M, Kurimoto M (2001) Preventive effect of Coriandrum sativum (Chinese parsley) on localized lead deposition in ICR mice. J Ethnopharmacol 3(2–3):203–208

    Article  Google Scholar 

  39. 39.

    Henry DC, Neil RS, William JS (2003) Dietary supplement for promoting removal of heavy metals from the body. Available from:

  40. 40.

    Wangensteen H, Samuelsen AB, Malterud KE (2004) Antioxidant activity in extracts from coriander. Food Chemistry 88:293–297

    Article  CAS  Google Scholar 

  41. 41.

    Drumweaver (2009) Coriander chelates heavy metals and toxins from your body. Available from

  42. 42.

    Cini M, Fariello RY, Bianchettei A, Morettei A (1994) Studies on lipid peroxidation in the rat brain. Neurochem Res 19:283

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Monterio HP, Abdalla DSP, Alario A, Bechara EJ (1986) Generation of oxygen species during coupled autooxidation of oxyhemoglobin and δ-amino levulinic acid. Biochem 95:351

    Google Scholar 

  44. 44.

    Gurer H, Ozgunes H, Oztezcan S, Ercal N (1999) Antioxidant role of alpha lipoic acid in lead toxicity. Free Radic Biol Med 27:75

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Bhattacharya A, Chatterjee A, Ghosal S, Bhattacharya SK (1999) Antioxidant activity of active tannoid principles of Emblica officinalis (Amla). Ind J Exp Biol 37:676–680

    CAS  Google Scholar 

  46. 46.

    Gibanananda R, Hussain SA (2002) Oxidants. Ind J Exp Biol 40:1213–1232

    Google Scholar 

  47. 47.

    Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause and consequence? Lancet 344:721

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Ghosh J, Myers E (1998) Inhibition of arachidonate 5-lipoxyenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci, USA 95:13–182

    Article  Google Scholar 

  49. 49.

    Lee YJ, Galoforo SS, Berns CM (1998) Glucose deprivation induced cytotoxicity and alteration in mitogen activated protein kinase activation are mediated by oxidative stress in multidrug resistant human breast carcinoma cells. J Biol Chem 243:52–94

    Google Scholar 

  50. 50.

    Mylorie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte SOD activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512

    Article  Google Scholar 

  51. 51.

    Kasperczyk S, Brikner E, Kasperczyk A, Zalejska FJ (2004) Activity of SOD and catalase in people protractedly exposed to lead compounds. Ann Agric Environ Med 11:291

    CAS  PubMed  Google Scholar 

  52. 52.

    Patra RC, Swarup D (2000) Effect of lead on erythrocyte antioxidant defence, lipid peroxide level and thiol groups in calves. Res Vet Sci 68:71

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Bechara EJH (2004) Lead poisoning and oxidative stress. Free Radic Biol Med 36(Suppl 1):S22

    Google Scholar 

  54. 54.

    Fuhr BJ, Rabenstein DL (1973) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. IX. The binding of cadmium, zinc, lead, and mercury by glutathione. J Am Chem Sot 95:6944–6954

    Article  CAS  Google Scholar 

  55. 55.

    Klaassen CD, Shoeman DW (1974) Biliary excretion of lead in rats, rabbits and dogs. Toxicol Appl Phatmacol 29:434–446

    Article  CAS  Google Scholar 

  56. 56.

    Christie NJ, Costa M (1984) In vitro assessment of the toxicity of metal compounds. IV. Disposition of metals in cells: interaction with membranes, glutathione, metallothionein, and DNA. Biol Trace Elem Res 6:139–158

    Article  CAS  Google Scholar 

  57. 57.

    Haeger-Aronsen B, Abdulla M, Fristedt BI (1971) Effect of lead on aminolevulinic acid dehydratase activity in red blood cells. Arch Environ Health 23:440–445

    CAS  PubMed  Google Scholar 

  58. 58.

    Ribarov SR, Bochev PG (1982) Lead-hemoglobin interaction as a possible source of reactive oxygen species—a chemiluminescent study. Arch Biochem Biophy 213:288–292

    Article  CAS  Google Scholar 

  59. 59.

    Gibbs PNB, Gore MG, Jordan PM (1991) Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolevulinic dehydratase. Biochem J 225:573–580

    Google Scholar 

  60. 60.

    Monteiro HP, Abdalla DSP, Faljoni-Alario A, Bechara EJH (1986) Generation of active oxygen species during coupled autooxidation of oxyhemoglobin and delta-aminolevulinic acid. Biochem Biophys Acta 881:100–106

    CAS  PubMed  Google Scholar 

  61. 61.

    Monteiro HP, Abdalla DSP, Augusta O, Bechara EJH (1989) Free radical generation during 6-aminolevulinic acid autooxidation: induction of hemoglobin and connections with porphyropathies. Arch Biochem Biophy 271:206–216

    Article  CAS  Google Scholar 

  62. 62.

    Hermes-Lima M, Valle GRV, Vercesi AE, Bechara EJH (1991) Damage to rat liver mitochondria promoted by delta-aminolevulinic acid-generated reactive oxygen species: connections with acute intermittent porphyria and lead poisoning. Biochem Biophys Acta 1056:57–63

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Oteiza PI, Bechara EJH (1993) 5-Aminolevulinic acid induces lipid peroxidation in cardiolipin-rich lipsomes. Arch Biochem Biophy 305:282–287

    Article  CAS  Google Scholar 

  64. 64.

    Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Badami S, Gupta MK, Suresh B (2003) Antioxidant activity of the ethanolic extract of Striga orobanchioides. J Ethanopharmocol 85:227–230

    Article  Google Scholar 

  66. 66.

    Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo. Evidence from animal studies. J Nutr 133:3275–3284

    Google Scholar 

  67. 67.

    Soto C, Recoba R, Barron H, Alvarez C, Favari L (2003) Silymarin increases antioxidant enzymes in alloxan induced diabetes in rat pancreas. Comp Biochem Physiol C Toxicol Pharmacol 136:205–212

    Article  PubMed  Google Scholar 

  68. 68.

    Toyokuni S, Tanaka T, Kawaguchi W, Fang NR, Ozeki M, Akatsuka S (2003) Effects of the phenolic contents of Mauritian endemic plant extracts on promoter activities of antioxidant enzymes. Free Radic Res 37:1215–1224

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Jung SH, Lee YS, Lin SS, Lee S, Shin KH, Kim YS (2004) Antioxidant activities of isoflavones from the rhizome of Belamcanda chinesis on carbon tetra chloride induced hepatic injury in rats. Arch Pharma Res 27:184–188

    Article  CAS  Google Scholar 

  70. 70.

    Ranaivo HR, Rakotoarison O, Tesse A, Schott C, Randriantsoa A, Lobstein A (2004) Cedrelopsis grevei induced hypotension and improved endothelial vasodilation through an increase of Cu/Zn SOD protein expression. Am J Physiol Heart Circ Physiol 286:775–781

    Article  Google Scholar 

  71. 71.

    Sudheesh S, Vijayalakshmi NR (2005) Flavonoids from Punica granatum—potential antiperoxidative agents. Fitoterapia 76:181–186

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Wildman REC (2000) Handbook of nutraceuticals and functional foods. CRC Press, London, New York, Washington D.C., p 16

    Google Scholar 

  73. 73.

    Nduka N (1999) Clinical biochemistry for students of pathology. Longman Nigerian Plc, Ikeja, pp 1–236

    Google Scholar 

  74. 74.

    Kaur R, Dhanuju CK, Kaur K (1999) Effect of dietary selenium on biochemical composition in rat testis. Ind J Exp Biol 37:509–511

    CAS  Google Scholar 

  75. 75.

    Kojima M, Nemoto K, Murai U (2002) Altered gene expression of hepatic lanosterol 14x-demethylase (CYP51) in lead nitrate-treated rats. Arch Toxicol 76:398–403

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Kumari SS, Verghese A, Muraleedharan D, Menon UP (1990) Protective action of aspirin in experimental myocardial infarction induced by isoproterenol in rats and its effect on lipid peroxidation. Indian J Exp Biol 28:480–485

    Google Scholar 

  77. 77.

    Kavithalakhsmi N, Narasimhan M, Shanmugasundaram KR, Shanmugasundaram ERB (2006) Antioxidant activity of a salt spice herbal mixture against free radical induction. J Ethnopharmacol 105(1–2):76–83

    Google Scholar 

  78. 78.

    Chithra V, Leelamma S (1997) Hypolipidemic effect of coriander seeds (Coriandrum sativum): mechanism of action. Plant Foods Hum 51:167–172

    Article  CAS  Google Scholar 

  79. 79.

    Chowdhury AR, Gautam AK (1995) Alteration of human sperm and other seminal constituents after lead exposure. Ind J Physiol Alld Sci 49:58–73

    Google Scholar 

  80. 80.

    Sokol RZ, Madding CE, Swerdloff RS (1985) Lead toxicity and the hypothalamic–pituitary–testicular axis. Biol Reprod 33:722–778

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Karunasagar D, Krishna MV, Rao SV, Arunachalam J (2005) Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum. J Hazard Mater 118(1–3):133–139

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Zhou JR, Jr. Erdman JW (1995) Phitic acid in health and disease. Crit Rev Food Sci Nutr 35:495–508

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    Leeson CR, Leeson TS, Paparo AA (1985) Textbook of histology, 5th edn. Saunders, Philadelphia, p 498

    Google Scholar 

  84. 84.

    Hilderbrand DC, Der R, Griffin WT, Fahim MS (1972) Effect of lead acetate on reproduction. Am J Obstet Gynecol 115(8):1058–1065

    Google Scholar 

  85. 85.

    Eyden BP, Maisin JR, Mattelin G (1978) Long-term effect of dietary lead acetate on survival, body weight and seminal cytology in mice. Bull Environ Contam Toxicol 19:266–272

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Chowdhury AR, Rao RV, Gautam AK (1986) Histochemical changes in the testes of lead induced experimental rats. Folia Histochem Cytobiol 24(3):233–238

    CAS  PubMed  Google Scholar 

  87. 87.

    Saxena DK, Srivastara RS, Lal B, Chndra SV (1987) The effects of lead exposure on the testis of growing rats. Exp Pathol 31:240–252

    Google Scholar 

  88. 88.

    Sarkar M, Ray Chaudhuri G, Chattopadhyay A, Biswas NM (2003) Effect of sodium arsenite on spermatogenesis, plasma gonadotrophins and testosterone in rats. Indian Asian J Androl 5:27–31

    CAS  Google Scholar 

Download references


The authors are thankful to the authorities of Banasthali University for providing support to the study.

Conflict of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information



Corresponding author

Correspondence to Veena Sharma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, V., Kansal, L. & Sharma, A. Prophylactic Efficacy of Coriandrum sativum (Coriander) on Testis of Lead-Exposed Mice. Biol Trace Elem Res 136, 337–354 (2010).

Download citation


  • Coriandrum sativum
  • Testis
  • Lead nitrate
  • Histology
  • Mice