Skip to main content

Advertisement

Log in

Histomorphometric and Microchemical Characterization of Maturing Dental Enamel in Rats Fed a Boron-Deficient Diet

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Few reports are available in the literature on enamel formation under nutritional deficiencies. Thus, we performed a study to determine the effects of boron (B) deficiency on the maturing dental enamel, employing the rat continuously erupting incisor as the experimental model. Male Wistar rats, 21 days old, were used throughout. They were divided into two groups, each containing ten animals: +B (adequate; 3-mg B/kg diet) and −B (boron deficient; 0.07-mg B/kg diet). The animals were maintained on their respective diets for 14 days and then euthanized. The mandibles were resected, fixed, and processed for embedding in paraffin and/or methyl methacrylate. Oriented histological sections of the continuously erupting incisor were obtained at the level of the mesial root of the first molar, allowing access to the maturation zone of the developing enamel. Dietary treatment did not affect food intake and body weight. Histomorphometric evaluation using undecalcified sections showed a reduction in enamel thickness (hypoplasia), whereas microchemical characterization by energy-dispersive X-ray spectrometry did not reveal alterations in enamel mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu JC, Chun YH, Al Hazzazzi T, Simmer JP (2007) Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 186:78–85

    Article  PubMed  Google Scholar 

  2. Nanci A (2008) Ten Cate's oral histology: development, structure, and function, 7th edn. Mosby, St. Louis

    Google Scholar 

  3. Warshawsky H, Smith CE (1974) Morphological classification of rat incisor ameloblasts. Anat Rec 179:423–446

    Article  CAS  PubMed  Google Scholar 

  4. Smith CE, Nanci A (1989) A method for sampling the stages of amelogenesis on mandibular rat incisor using the molars as a reference for dissection. Anat Rec 225:257–266

    Article  CAS  PubMed  Google Scholar 

  5. Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108

    Article  CAS  PubMed  Google Scholar 

  6. Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161

    Article  CAS  PubMed  Google Scholar 

  7. Smith CE, Chong DL, Bartlett JD, Margolis HC (2005) Mineral acquisition rates in developing enamel on maxillary and mandibular incisor of rats and mice: implications to extracellular acid loading as apatite crystals mature. J Bone Miner Res 20:240–249

    Article  CAS  PubMed  Google Scholar 

  8. Nanci A, Smith CE (1992) Development and calcification of enamel. In: Bonucci E (ed) Calcification in biological systems. CRC, Boca Raton, pp 313–343

    Google Scholar 

  9. Smith CE, Warshawsky H (1975) Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H-thymidine. Anat Rec 183:523–561

    Article  CAS  PubMed  Google Scholar 

  10. Punyasingh JT, Hoffman S, Harris SS, Navia JM (1984) Effects of vitamin A deficiency on rat incisor formation. J Oral Pathol 13:40–51

    Article  CAS  PubMed  Google Scholar 

  11. Cerklewski FL (1981) Effect of suboptimal zinc nutrition during gestation and lactation on rat molar tooth composition and dental caries. J Nutr 111:1780–1783

    CAS  PubMed  Google Scholar 

  12. Lozupone E, Favia A (1989) Effects of a low calcium maternal and weaning diet on the thickness and microhardness of rats incisor enamel and dentine. Arch Oral Biol 34:491–498

    Article  CAS  PubMed  Google Scholar 

  13. Lozupone E, Favia A (1994) Morphometric analysis of the deposition and mineralization of enamel and dentine from rat incisor during the recovery phase following a low-calcium regimen. Arch Oral Biol 39:409–416

    Article  CAS  PubMed  Google Scholar 

  14. Bonucci E, Lozupone E, Silvestrini G, Favia A, Mocetti P (1994) Morphological studies of hypomineralized enamel of rat pups on calcium-deficient diet, and of its changes after return to normal diet. Anat Rec 239:379–395

    Article  CAS  PubMed  Google Scholar 

  15. Nanci A, Mocetti P, Sakamoto Y, Kunikata M, Lozupone E, Bonucci E (2000) Morphological and immunocytochemical analyses on the effects of diet-induced hypocalcemia on enamel maturation in the rat incisor. J Histochem Cytochem 48:1043–1058

    CAS  PubMed  Google Scholar 

  16. Wessinger GD, Weinmann JP (1943) The effect of manganese and boron compounds on the rat incisor. J Physiol 139:233–238

    CAS  Google Scholar 

  17. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen FH (2008) Is boron nutritionally relevant? Nutr Rev 66:183–191

    Article  PubMed  Google Scholar 

  19. Chapin RE, Ku WW, Kenney MA, McCoy H (1998) The effect of boron on bone characteristics and plasma lipids in rats. Biol Trace Elem Res 66:395–399

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen FH (2000) The emergence of boron as nutritionally important throughout the life cycle. Nutrition 16:512–514

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen FH (2000) Importance of making dietary recommendations for elements designated as nutritionally beneficial, pharmacologically beneficial, or conditionally essential. J Trace Elem Exp Med 13:113–129

    Article  CAS  Google Scholar 

  22. Nielsen FH (2004) Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. Biofactors 20:161–171

    Article  CAS  PubMed  Google Scholar 

  23. Gallardo-Williams MT, Maronpot RR, Turner CH, Johnson CS, Harris MW, Jayo MJ, Chapin RE (2003) Effects of boric acid supplementation on bone histomorphometry, metabolism, and biomechanical properties in aged female F-344 rats. Biol Trace Elem Res 3:155–169

    Article  Google Scholar 

  24. Naghii MR, Tarkaman G, Mofid M (2006) Effects of boron and calcium supplementation on mechanical properties of bone in rats. Biofactors 28:195–201

    Article  CAS  PubMed  Google Scholar 

  25. Gorustovich A, Steimetz T, Nielsen FH, Guglielmotti MB (2008) A histomorphometric study of alveolar bone healing in rats fed a boron-deficient diet. Anat Rec 291:441–447

    Article  CAS  Google Scholar 

  26. Gorustovich A, Steimetz T, Nielsen FH, Guglielmotti MB (2008) A histomorphometric study of alveolar bone modeling and remodeling in mice fed a boron-deficient diet. Arch Oral Biol 53:677–682

    Article  CAS  PubMed  Google Scholar 

  27. Hunt CD (1996) Dietary boron deficiency and supplementation. In: Watson RR, Wolinsky I (eds) Methods in nutrition research. CRC, Boca Raton, pp 229–253

    Google Scholar 

  28. Hunt CD (1996) Biochemical effects of physiological amounts of dietary boron. J Trace Elem Exp Med 9:185–213

    Article  CAS  Google Scholar 

  29. Bakken NA, Hunt CD (2003) Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status. J Nutr 133:3577–3583

    CAS  PubMed  Google Scholar 

  30. Frost HM (1960) Presence of microscopic cracks in vivo in bone. H Ford Hosp Med Bull 8:25–35

    Google Scholar 

  31. Burr DB, Stafford T (1990) Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Rel Res 260:305–308

    Google Scholar 

  32. Warshawsky H (1971) A light and electron microscopic study of the nearly mature enamel of rat incisors. Anat Rec 169:559–584

    Article  CAS  PubMed  Google Scholar 

  33. Smith CE, Nanci A (1995) Overview of morphological changes in enamel organ cells associated with major events in amelogenesis. Int J Dev Biol 39:153–161

    CAS  PubMed  Google Scholar 

  34. Clarkson J (1989) Review of terminology, classifications, and indices of developmental defects of enamel. Adv Dent Res 3:104–109

    CAS  PubMed  Google Scholar 

  35. Seow WK (1991) Enamel hypoplasia in the primary dentition: a review. ASDC J Dent Child 58:441–452

    CAS  PubMed  Google Scholar 

  36. Oliveira AF, Chaves AM, Rosenblatt A (2006) The influence of enamel defects on the developmental of early caries in a population with low socioeconomic status: a longitudinal study. Caries Res 40:296–302

    Article  CAS  PubMed  Google Scholar 

  37. Sasaki T, Debari K, Garant PR (1987) Ameloblast modulation and changes in the Ca, P, and S content of developing enamel matrix as revealed by SEM–EDX. J Dent Res 66:778–783

    CAS  PubMed  Google Scholar 

  38. Arnold WH, Gaengler P (2007) Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Ann Anat 189:183–190

    Article  CAS  PubMed  Google Scholar 

  39. Torrisi L, Rapisarda E, Cicero G (1989) Boron in dental hard tissues studied by 11B(p,α)8Be nuclear reaction. Minerva Stomatol 38:935–940

    CAS  PubMed  Google Scholar 

  40. Shashikiran ND, Subba Redy VV, Hiremath MC (2007) Estimation of trace elements in sound and carious enamel of primary and permanent teeth by atomic absorption spectrophotometry: an in vitro study. Indian J Dent Res 18:157–162

    Article  CAS  PubMed  Google Scholar 

  41. Losee FL, Ludwig TG (1970) Trace elements and caries. J Dent Res 49:1229–1235

    CAS  PubMed  Google Scholar 

  42. Curzon MEJ, Adkins BL, Bibby BG, Losee FL (1970) Combined effect of trace elements and fluorine on caries. J Dent Res 49:526–528

    CAS  PubMed  Google Scholar 

  43. Curzon MEJ (1983) Combined effect of trace elements and fluorine on caries: changes over ten years in Northwest Ohio (USA). J Dent Res 62:96–99

    CAS  PubMed  Google Scholar 

  44. Liu FTY (1975) Postdevelopmental effects of boron, fluoride, and their combination on dental caries activity in the rat. J Dent Res 54:97–103

    CAS  PubMed  Google Scholar 

  45. Elsair J, Merad R, Denine R, Reggabi M, Benali S, Assouz M, Khelfat K, Aoul MT (1980) Boron as an antidote in acute fluoride intoxication in rabbits: its action on the fluoride and calcium–phosphorus metabolism. Fluoride 13:30–38

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the US Department of Agriculture, Agriculture Research Service USDA, ARS Extramural Agreement 58-5450-4N-F038.

The authors wish to acknowledge the technical assistance of Jim Lindlauf (USDA ARS, Grand Forks Human Nutrition Research Center) for animal diet preparation, Lic. Pablo Do Campo (IByME-CONICET) with confocal laser scanning microscopy, and Ing. Pedro Villagrán (LASEM–ANPCyT–UNSa–CONICET) with SEM–EDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro A. Gorustovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haro Durand, L.A., Mesones, R.V., Nielsen, F.H. et al. Histomorphometric and Microchemical Characterization of Maturing Dental Enamel in Rats Fed a Boron-Deficient Diet. Biol Trace Elem Res 135, 242–252 (2010). https://doi.org/10.1007/s12011-009-8512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8512-9

Keywords

Navigation