Skip to main content
Log in

Spectroscopic Studies on the Binding of Cobalt(II) 1,10-Phenanthroline Complex to Bovine Serum Albumin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The binding interaction of the cobalt(II) 1,10-phenanthroline complex (Co(phen) 2+3 , phen = 1,10-phenanthroline) with bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism measurements under simulative physiological conditions. The experiment results showed that the fluorescence intensity of BSA was dramatically decreased owing to the formation of Co(phen) 2+3 –BSA complex. The corresponding association constants (K a) between Co(phen) 2+3 and BSA at four different temperatures were calculated according to the modified Stern–Volmer equation. The enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be −2.73 kJ mol−1 and 82.27 J mol−1 K−1, respectively, which suggested that electrostatic interaction and hydrophobic force played major roles in stabilizing the Co(phen) 2+3 –BSA complex. Site marker competitive experiments indicated that the binding of Co(phen) 2+3 to BSA primarily took place in site I of BSA. A value of 4.11 nm for the average distance r between Co(phen) 2+3 (acceptor) and tryptophan residues of BSA (donor) was derived from Förster’s energy transfer theory. The conformational investigation showed that the presence of Co(phen) 2+3 resulted in the change of BSA secondary structure and induced the slight unfolding of the polypeptides of protein, which confirmed the microenvironment and conformational changes of BSA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zolese G, Falcioni G, Bertoli E, Galeazzi R, Wozniak M, Wypych Z, Gratton E, Ambrosini A (2000) Steady-state and time resolved fluorescence of albumins interacting with N-oleoylethanolamine, a component of the endogenous N-acylethanolamines. Proteins Struct Funct Genet 40:39–48

    Article  CAS  PubMed  Google Scholar 

  2. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  PubMed  Google Scholar 

  3. Zhang YZ, Zhou B, Liu YX, Zhou CX, Ding XL, Liu Y (2008) Fluorescence study on the interaction of bovine serum albumin with P-aminoazobenzene. J Fluoresc 18:109–118

    Article  CAS  PubMed  Google Scholar 

  4. Osinsky SP, Levitin IY, Sigan AL, Bubnovskaya LN, Ganusevich II, Campanella L, Wardman P (2003) Redox-active cobalt complexes as promising antitumor agents. Russ Chem Bull 52:2636–2645

    Article  CAS  Google Scholar 

  5. Jung M, Kerr DE, Senter PD (1997) Bioorganometallic chemistry—synthesis and antitumor activity of cobalt carbonyl complexes. Arch Pharm Pharm Med Chem 330:173–176

    Article  CAS  Google Scholar 

  6. Shimakoshi H, Kaieda T, Matsuo T, Sato H, Hisaeda Y (2003) Syntheses of new water-soluble dicobalt complexes having two cobalt-carbon bonds and their ability for DNA cleavage. Tetrahedron Lett 44:5197–5199

    Article  CAS  Google Scholar 

  7. Peng B, Chao H, Sun B, Li H, Gao F, Ji LN (2007) Synthesis, DNA-binding and photocleavage studies of cobalt(III) mixed-polypyridyl complexes: [Co(phen)2(dpta)]3+ and [Co(phen)2(amtp)]3+. J Inorg Biochem 101:404–411

    Article  CAS  PubMed  Google Scholar 

  8. Kumar RS, Arunachalam S, Periasamy VS, Preethy CP, Riyasdeen A, Akbarsha MA (2008) Synthesis, DNA binding and antitumor activities of some novel polymer–cobalt(III) complexes containing 1, 10-phenanthroline ligand. Polyhedron 27:1111–1120

    Article  CAS  Google Scholar 

  9. Guharay J, Sengupta B, Sengupta PK (2001) Protein–flavonol interaction: fluorescence spectroscopic study. Proteins 43:75–81

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YZ, Zhang XP, Hou HN, Dai J, Liu Y (2008) Study on the interaction between Cu(phen) 2+3 and bovine serum albumin by spectroscopic methods. Biol Trace Elem Res 121:276–287

    Article  CAS  PubMed  Google Scholar 

  11. Inskeep RG (1962) The spectra of the tris complexes of 1, 10-phenanthroline and 2, 2-bipyridine with the transition metals iron(II) through zinc(II). J Inorg Nucl Chem 24:763–776

    Article  Google Scholar 

  12. Cui FL, Wang JL, Cui YR, Li JP, Yao XJ, Lu Y, Fan J (2007) The binding of 3-(p-bromophenyl)-5-methyl-thiohydantoin with human serum albumin: investigation by fluorescence spectroscopy and molecular model. J Luminesc 127:409–415

    Article  CAS  Google Scholar 

  13. Hu YJ, Liu Y, Zhang LX, Zhao RM, Qu SS (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178

    Article  CAS  Google Scholar 

  14. Gelamo EL, Silva CHTP, Imasato H, Tabak M (2002) Interaction of bovine and human serum albumins with ionic surfactants: spectroscopy and modeling. Biochim Biophys Acta 1594:84–99

    CAS  PubMed  Google Scholar 

  15. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen, a probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  CAS  PubMed  Google Scholar 

  16. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Plenum, New York, pp 277–285

    Google Scholar 

  17. Mei P, Zhang YZ, Zhang XP, Yan CX, Zhang H, Liu Y (2008) Spectroscopic investigation of the interaction between copper (II) 2-oxo-propionic acid salicyloyl hydrazone complex and bovine serum albumin. Biol Trace Elem Res 124:269–282

    Article  CAS  PubMed  Google Scholar 

  18. Lehrer SS (1971) The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  CAS  PubMed  Google Scholar 

  19. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26

    Article  CAS  PubMed  Google Scholar 

  20. Ross PD, Subramanian S (1981) Thermodynamic of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  21. Wang YQ, Zhang HM, Zhang GC, Tao WH, Fei ZH (2007) Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J Pharm Biomed Anal 43:1869–1875

    Article  CAS  PubMed  Google Scholar 

  22. Jin J, Zhang X (2008) Spectrophotometric studies on the interaction between pazufloxacin mesylate and human serum albumin or lysozyme. J Luminesc 128:81–86

    Article  CAS  Google Scholar 

  23. Zhang GW, Que QM, Pan JH, Guo JB (2008) Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J Mol Struct 881:132–138

    Article  CAS  Google Scholar 

  24. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    CAS  PubMed  Google Scholar 

  25. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  26. Naik DB, Moorty PN, Priyadarsini KI (1990) Nonradiative energy transfer from 7-amino coumarin dyes to thiazine dyes in methanolic solutions. Chem Phys Lett 168:533–538

    Article  CAS  Google Scholar 

  27. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry, vol 3. Academic, New York, pp 93–137

    Google Scholar 

  28. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry 16:819–828

    Article  CAS  PubMed  Google Scholar 

  29. Mahammed A, Gray HB, Weaver JJ, Sorasaenee K, Gross Z (2004) Amphiphilic corroles bind tightly to human serum albumin. Bioconjugate Chem 15:738–746

    Article  CAS  Google Scholar 

  30. Li DJ, Zhu JF, Jin J, Yao XJ (2007) Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. J Mol Struct 846:34–41

    Article  CAS  Google Scholar 

  31. Zhang Y, Qi ZD, Zheng D, Li CH, Liu Y (2009) Interactions of chromium (III) and chromium (VI) with bovine serum albumin studied by UV spectroscopy, circular dichroism, and fluorometry. Biol Trace Elem Res 130:172–184

    Article  CAS  PubMed  Google Scholar 

  32. Yuan T, Weljie AM, Vogel HJ (1998) Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry 37:3187–3195

    Article  CAS  PubMed  Google Scholar 

  33. Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–209

    CAS  Google Scholar 

  34. Klajnert B, Bryszewska M (2002) Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry 55:33–35

    Article  CAS  PubMed  Google Scholar 

  35. Yue YY, Zhang YH, Li Y, Zhu JH, Qin J, Chen XG (2008) Interaction of nobiletin with human serum albumin studied using optical spectroscopy and molecular modeling methods. J Luminesc 128:513–520

    Article  CAS  Google Scholar 

  36. Yang P, Gao F (2002) The principle of bioinorganic chemistry. Science, Beijing, p 349

    Google Scholar 

  37. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  CAS  PubMed  Google Scholar 

  38. Whitmore L, Wallace BA (2004) An online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:668–673

    Article  Google Scholar 

  39. Cui FT, Fan J, Hu ZD (2004) Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg Med Chem 12:151–157

    Article  CAS  PubMed  Google Scholar 

  40. Zhang YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159

    Article  CAS  Google Scholar 

  41. Tian JN, Liu JQ, Hu ZD, Chen XG (2005) Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 13:4124–4129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Chinese 863 Program (2007AA06Z407); National Natural Science Foundation of China (grant nos. 30570015, 20621502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YZ., Li, HR., Dai, J. et al. Spectroscopic Studies on the Binding of Cobalt(II) 1,10-Phenanthroline Complex to Bovine Serum Albumin. Biol Trace Elem Res 135, 136–152 (2010). https://doi.org/10.1007/s12011-009-8502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8502-y

Keywords

Navigation