Skip to main content

Influence of Estrogens on Copper Indicators: In Vivo and In Vitro Studies

Abstract

Classic copper indicators are not sensitive and specific for detecting excess copper exposure when this is higher than customary but not markedly elevated. Serum copper and ceruloplasmin (Cp) are the most commonly used indicators to assess nutritional status of copper. The objective of this paper was to study the influence of estrogens on these indicators and others used to assess early effects of excess copper exposure in humans and the expression of a set of copper related proteins in a hepatic cellular model. For the studies in humans, 107 healthy participants (18–50 years) were allocated as follows: group 1 (n = 39), women assessed on day 7 of their hormonal cycle; group 2 (n = 34), women assessed on day 21 of their hormonal cycle, and group 3 (n = 34, comparison group), healthy men. Participants received 8 mg Cu/day (as copper sulfate) during 6 months. Serum Cp and Cu, Cu–Zn–superoxide dismutase activity, liver function indicators [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma glutamyltransferase (GGT)], and serum Fe and Zn concentrations were measured monthly. In addition, the influence of estradiol on intracellular total copper content, hctr1, dmt1 and shbg mRNA abundance and hCTR1, and DMT1 expression was measured in HepG2 cells. Serum Cu, Fe, and Zn and liver aminotransferases but not Cu–Zn–superoxide dismutase varied depending on sex. Fe nutrition indicators, GGT, and ALT activities showed significant differences between the hormonal phases. Cellular experiments showed that estradiol increased cellular Cu concentration and hCTR1 and DMT1 mRNA expression and changed these proteins expression patterns. Estradiols significantly influence the responses to copper at the whole body and the cellular levels, suggesting that they help maintaining copper availability for metabolic needs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kehoe CA, Faughan MS, Gilmore WS, Coulter JS, Howard AN, Strain JJ (2000) Plasma diamino oxidase activity is greater in copper—adequate than copper-marginal or copper deficient rats. J Nutr 130:30–33

    PubMed  CAS  Google Scholar 

  2. 2.

    Kehoe CA, Turley E, Bonham MP, O'Connor M, McKeown A, Faughan MS (2000) Response of putative indices of copper status to copper supplementation in human subjects. Br J Nutr 84:151–156

    PubMed  CAS  Google Scholar 

  3. 3.

    Rock E, Mazur A, O'Connor JM, Bonham MP, Rayssiguier Y, Strain JJ (2000) The effect of copper supplementation on red blood cell oxidizability and plasma antioxidants in middle-aged healthy volunteers. Free Radic Biol Med 28:324–329

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Araya M, Olivares M, Pizarro F, Gonzalez M, Speisky H, Uauy R (2003) Copper exposure and potential biomarkers of copper metabolism. Biometals 16:199–204

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Araya M, Olivares M, Pizarro F, Mendez M, Gonzalez G, Uauy R (2005) Supplementing copper at the upper level of the adult dietary recommended intake induces detectable but transient changes in healthy adults. J Nutr 135:2367–2371

    PubMed  CAS  Google Scholar 

  6. 6.

    Mendez MA, Araya M, Olivares M, Pizarro F, Gonzalez M (2004) Sex and ceruloplasmin modulate the response to copper exposure in healthy individuals. Environ Health Perspect 112:1654–1657

    PubMed  CAS  Google Scholar 

  7. 7.

    Araya M, Olivares M, Pizarro F, Llanos A, Figueroa G, Uauy R (2004) Community-based randomized double-blind study of gastrointestinal effects and copper exposure in drinking water. Environ Health Perspect 112(10):1068–1073

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Araya M, Olivares M, Pizarro F, Gonzalez M, Speisky H, Uauy R (2003) Gastrointestinal symptoms and blood indicators of copper load in apparently healthy adults undergoing controlled copper exposure. Am J Clin Nutr 77(3):646–650

    PubMed  CAS  Google Scholar 

  9. 9.

    Allen TM, Manoli A 2nd, LaMont RL (1982) Skeletal changes associated with copper deficiency. Clin Orthop Relat Res 168:206–210

    PubMed  Google Scholar 

  10. 10.

    Conlan D, Korula R, Tallentire D (1990) Serum copper levels in elderly patients with femoral-neck fractures. Age Ageing 19:212–214

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Bonham M, O'Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87:393–403

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress and human health. Mol Aspects Med 26:268–298

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Rayssiguier Y, Gueux E, Bussiere L, Mazur A (1993) Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J Nutr 123:1343–1348

    PubMed  CAS  Google Scholar 

  14. 14.

    Knovich MA, Ll'yasova D, Ivanova A, Molnar I (2008) The association between serum copper and anaemia in the adult second national health and nutrition examination survey (nhanes ii) population. Brit J Nutr 99:1226–1229

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Ferguson CJ, Wareing M, Ward DT, Green R, Smith CP, Riccardi D (2001) Cellular localization of divalent metal transporter DMT-1 in rat kidney. Am J Physiol (Renal Physiol) 280:F803–F814

    CAS  Google Scholar 

  17. 17.

    Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA 99:12345–12350

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Dancis A, Haile D, Yuan DS, Klausner RD (1994) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269:25660–25667

    PubMed  CAS  Google Scholar 

  19. 19.

    Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 94:7481–7486

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Kuo YM, Zhou B, Cosco D, Gitschier J (2000) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA 198:6836–6841

    Google Scholar 

  21. 21.

    Lee J, Pena MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Klomp AE, Tops BB, Van Denberg IE, Berger R, Klomp LW (2002) Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J 364(Pt 2):497–505

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, Moore EG, Hainsworth LN, Umbreit JN, Conrad ME, Feng L, Lis A, Roth JA, Singleton S, Garrick LM (2003) DMT1: a mammalian transporter for multiple metals. Biometals 16:41–54

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Arredondo M, Munoz P, Mura CV, Nunez MT (2003) DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol 284:C1525–C1530

    PubMed  CAS  Google Scholar 

  25. 25.

    Arredondo M, Uauy R, Gonzalez M (2000) Regulation of copper uptake and transport in intestinal cell monolayers by acute and chronic copper exposure. Biochim Biophys Acta 1474:169–176

    PubMed  CAS  Google Scholar 

  26. 26.

    Bauerly KA, Kelleher SL, Lonnerdal B (2004) Functional and molecular responses of suckling rat pups and human intestinal Caco-2 cells to copper treatment. J Nutr Biochem 15:155–162

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Eisses JF, Kaplan JH (2005) The mechanism of copper uptake mediated by human CTR1: a mutational analysis. J Biol Chem 280:37159–37168

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Hammond GL, Hogeveen KN, Visser M, Coelingh-Bennink HJ (2008) Estetrol does not bind sex hormone binding globulin or increase its production by human HepG2 cells. Climacteric 11(Suppl 1):41–44

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Koehler KF, Helguero LA, Haldosen LA, Warner M, Gustafsson JA (2005) Reflections on the discovery and significance of estrogen receptor beta. Endocr Rev 26:465–478

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Sandberg AA, Slaunwhite WR Jr (1957) Studies on phenolic steroids in human subjects. II. The metabolic fate and hepato-biliary-enteric circulation of C14-estrone and C14-estradiol in women. J Clin Invest 36:1266–1278

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Qiu Y, Waters CE, Lewis AE, Langman MJ, Eggo MC (2002) Oestrogen-induced apoptosis in colonocytes expressing oestrogen receptor beta. J Endocrinol 174(3):369–377

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Di Domenico M, Castoria G, Bilancio A, Migliaccio A, Auricchio F (1996) Estradiol activation of human colon carcinoma-derived Caco-2 cell growth. Cancer Res 56:4516–4521

    PubMed  Google Scholar 

  33. 33.

    Kuo SM, Leavitt PS (1999) Genistein increases metallothionein expression in human intestinal cells, Caco-2. Biochem Cell Biol 77(2):79–88

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Satoh T, Matsui M, Tamura H (2000) Sulfotransferases in a human colon carcinoma cell line, Caco-2. Biol Pharm Bull 23(7):810–814

    PubMed  CAS  Google Scholar 

  35. 35.

    Evans MJ, Harris HA, Miller CP, Karathanasis SK, Adelman SJ (2002) Estrogen receptors alpha and beta have similar activities in multiple endothelial cell pathways. Endocrinology 143:3785–3795

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    German JL 3rd, Bearn AG (1961) Effect of estrogens on copper metabolism in Wilson's disease. Clin Invest 40:445–453

    Article  CAS  Google Scholar 

  37. 37.

    Institute of Medicine, Food and Nutrition Board (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington

    Google Scholar 

  38. 38.

    Olivares M, Pizarro F, de Pablo S, Araya M, Uauy R (2004) Iron, zinc and copper: contents in common Chilean foods and daily intakes in Santiago City, Chile. Nutrition 20:205–212

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Arredondo M, Cambiazo V, Tapia L, Núñez MT, Uauy R, González M (2004) Copper overload affects copper an iron metabolism in HepG2 cells. Am J Physiol 287(1):G27–G32

    CAS  Google Scholar 

  40. 40.

    Hiraku Y, Yamashita N, Nishiguchi M, Kawanishi S (2001) Catechol estrogens induce oxidative DNA damage and estradiol enhances cell proliferation. Int J Cancer 92:333–337

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Guleria K, Agarwal N, Mishra K, Gulati R, Mehendiratta A (2004) Evaluation of endometrial steroid receptors and cell mitotic activity in women using copper intrauterine device: Can Cu-T prevent endometrial cancer? J Obstet Gynaecol Res 30:181–187

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Rodrigues da Cunha AC, Dorea JG, Cantuaria AA (2001) Intrauterine device and maternal copper metabolism during lactation. Contraception 63:37–39

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Higashikawa A, Suwazono Y, Okubo Y, Uetani M, Kobayashi E, Kido T, Nogawa K (2005) Association of working conditions and lifestyle with increased serum gamma-glutamyltransferase: a follow-up study. Arch Med Res 36:567–573

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Mukai M, Ozasa K, Hayashi K, Kawai K (2002) Various S-GOT/S-GPT ratios in nonviral liver disorders and related physical conditions and life-style. Dig Dis Sci 47:549–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation conducted in the University of Chile. It was funded by Fondecyt (CONICYT, Chile), grants 1040979 and 1070595. Authors thank Dr. Emilio Fernandez for his advice in defining the levels of estrogens and progesterone to form the study groups. They also thank the skillful work of all those involved in the sampling and samples processing that helped guaranteeing the quality of the field operation and of the data collected.

None have conflicts of interest to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magdalena Araya.

Additional information

All authors have contributed significantly to the paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arredondo, M., Núñez, H., López, G. et al. Influence of Estrogens on Copper Indicators: In Vivo and In Vitro Studies. Biol Trace Elem Res 134, 252–264 (2010). https://doi.org/10.1007/s12011-009-8475-x

Download citation

Keywords

  • Estrogens
  • Copper indicators
  • Liver aminotransferases
  • Cu–Zn–SOD
  • Uptake and copper transport