Skip to main content

Advertisement

Log in

Distribution and Speciation of Arsenic by Transplacental and Early Life Exposure to Inorganic Arsenic in Offspring Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO2 from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood–brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Research Council (NRC) (2001) Arsenic in drinking water. Update to the 1999 Arsenic in Drinking Water Report. National Academies, Washington

    Google Scholar 

  2. Focazio MJ, Welch AH, Watkins SA, Helsel DR, Horn MA (2000) A retrospective analysis on the occurrence of arsenic in ground-water resources in the United States and limitations in drinking-water-supply characterizations. Water Resources Investigations Report. U.S. Geological Survey, Reston, pp 99–4279

    Google Scholar 

  3. Habib A, Hayashi T, Sato KK, Hata A, Ikebe M, Rahman F, Hassan P, Endo Y, Endo G (2007) Effectiveness of arsenic mitigation program in Bangladesh—relationship between arsenic concentrations in well water and urine. Osaka City Med J 53:97–103

    CAS  PubMed  Google Scholar 

  4. Sun G (2004) Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol 198:268–271

    Article  CAS  PubMed  Google Scholar 

  5. Kurttio P, Pukkala E, Kahelin H, Auvinen A, Pekkanen J (1999) Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect 107:705–710

    Article  CAS  PubMed  Google Scholar 

  6. Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335

    Article  PubMed  CAS  Google Scholar 

  7. Goering PL, Aposhian HV, Mass MJ, Cebrian M, Beck BD, Waalkes MP (1999) The enigma of arsenic carcinogenesis: role of metabolism. Toxicol Sci 49:5–14

    Article  CAS  PubMed  Google Scholar 

  8. Kitchin KT (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Phamacol 172:249–261

    Article  CAS  Google Scholar 

  9. Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181–182:211–217

    Article  PubMed  Google Scholar 

  10. Gebel TW (2002) Arsenic methylation is a process of detoxification through accelerated excretion. Int J Hyg Environ Health 205:505–508

    Article  CAS  PubMed  Google Scholar 

  11. Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ (2002) The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect 110:S767–S771

    Google Scholar 

  12. Liaw J, Marshall G, Yuan Y, Ferreccio C, Steinmaus C, Smith AH (2008) Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol Biomarkers Prev 17:1982–1987

    Article  CAS  PubMed  Google Scholar 

  13. Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928

    Article  CAS  PubMed  Google Scholar 

  14. ATSDR (2000) Agency for Toxic Substances and Disease Registry. Toxicological Profiles for Arsenic USDHHS, Atlanta

    Google Scholar 

  15. National Research Council (NRC) (1999) Arsenic in drinking water. National Academies, Washington

    Google Scholar 

  16. Waalkes MP, Liu J, Diwan BA (2007) Transplacental arsenic carcinogenesis in mice. Toxicol Appl Pharmacol 222:271–280

    Article  CAS  PubMed  Google Scholar 

  17. Chattopadhyay S, Bhaumik S, Nag Chaudhury A, Das Gupta S (2002) Arsenic induced changes in growth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture. Toxicol Lett 128:73–84

    Article  CAS  PubMed  Google Scholar 

  18. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M (1998) Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci 44:185–190

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y, Xi S, Li X, Lu C, Li G, Xu Y, Qu C, Niu Y, Sun G (2006) Arsenic speciation transported through the placenta from mother mice to their newborn pups. Environ Res 101:349–355

    Article  CAS  PubMed  Google Scholar 

  20. Carter DE, Aposhian HV, Gandolfi AJ (2003) The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review. Toxicol Appl Pharmacol 193:309–334

    Article  CAS  PubMed  Google Scholar 

  21. Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419

    Article  CAS  PubMed  Google Scholar 

  22. Wei M, Wanibuchi H, Yamamoto S, Li W, Fukushima S (1999) Urinary bladder carcinogenicity of dimethylarsinic acid in male F344 rats. Carcinogenesis 20:1873–1876

    Article  CAS  PubMed  Google Scholar 

  23. Wei M, Wanibuchi H, Morimura K, Iwai S, Yoshida K, Endo G, Nakae D, Fukushima S (2002) Carcinogenicity of dimethylarsinic acid in male F344 rats and genetic alterations in induced urinary bladder tumors. Carcinogenesis 23:1387–1397

    Article  CAS  PubMed  Google Scholar 

  24. Csanaky I, Gregus Z (2002) Species variations in the biliary and urinary excretion of arsenate, arsenite and their metabolites. Comp Biochem Physiol C 131:355–365

    Google Scholar 

  25. Fischer AB, Buchet JP, Lauwerys RR (1985) Arsenic uptake, cytotoxicity and detoxification studied in mammalian cells in culture. Arch Toxicol 57:168–172

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki KT, Tomita T, Ogra Y, Ohmichi M (2001) Glutathione-conjugated arsenics in the potential hepato-enteric circulation in rats. Chem Res Toxicol 14:1604–1611

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki KT, Tomita T, Ogra Y, Ohmichi M (2003) Arsenic metabolism in hyperbilirubinemic rats: distribution and excretion in relation to transformation. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects, vol. V. Elsevier, London

    Google Scholar 

  28. Styblo M, Yamauchi H, Thomas DJ (1995) Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol Appl Pharmacol 135:172–178

    Article  CAS  PubMed  Google Scholar 

  29. Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Razo LM, Thomas DJ (2003) Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol 191:202–210

    Article  CAS  PubMed  Google Scholar 

  30. Kitchin KT, Del Razo LM, Brown JL, Anderson WL, Kenyon EM (1999) An integrated pharmacokinetic and pharmacodynamic study of arsenite action. 1. Heme oxygenase induction in rats. Teratog Carcinog Mutagen 19:385–402

    Article  CAS  PubMed  Google Scholar 

  31. Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183–191

    Article  CAS  PubMed  Google Scholar 

  32. Hughes MF, Kenyon EM (1998) Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration. J Toxicol Environ Health A 53:95–112

    Article  CAS  PubMed  Google Scholar 

  33. Buchet JP, Lauwerys R, Roel H (1981) Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. Int Arch Occup Environ Health 48:111–118

    Article  CAS  PubMed  Google Scholar 

  34. Buchet JP, Lauwerys R, Roe H (1981) Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int Arch Occup Environ Health 48:71–79

    Article  CAS  PubMed  Google Scholar 

  35. Moore MM, Harrington-Brock K, Doerr CL (1997) Relative genotoxic potency of arsenic and its methylated metabolites. Mutat Res 386:279–290

    Article  CAS  PubMed  Google Scholar 

  36. Ahmad S, Kitchin KT, Cullen WR (2002) Plasmid DNA caused by methylated arsenicals, ascorbic acid and human liver ferritin. Toxicol Lett 133:47–57

    Article  CAS  PubMed  Google Scholar 

  37. Mass MJ, Tennant A, Roop BC, Cullen WR, Styblo M, Thomas DJ, Kligerman AD (2001) Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 14:355–361

    Article  CAS  PubMed  Google Scholar 

  38. Cohen SM, Arnold LL, Uzvolgyi E, Cano M, St John M, Yamamoto S, Lu X, Le XC (2002) Possible role of dimethylarsinous acid in dimethylarsinic acid-induced urothelial toxicity and regeneration in the rat. Chem Res Toxicol 15:1150–1157

    Article  CAS  PubMed  Google Scholar 

  39. Csanaky I, Nemeti B, Gregus Z (2003) Dose-dependent biotransformation of arsenite in rats—not S-adenosylmethionine depletion impairs arsenic methylation at high dose. Toxicology 183:77–91

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez VM, Carrizales L, Mendoza MS, Fajardo OR, Giordano M (2002) Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol 24:743–750

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez VM, Del Razo LM, Limon-Pacheco JH, Giordano M, Sanchez-Pena LC, Uribe-Querol E, Gutierrez-Ospina G, Gonsebatt ME (2005) Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver. Toxicol Sci 84:157–166

    Article  CAS  PubMed  Google Scholar 

  42. Waters SB, Lin S, Styblo M, Thomas DJ (2003) A novel S-adenosylmethionine-dependent methyltransferase from rat liver cytosol catalyzes the formation of methylated arsenicals. In: Chapell WR, Abernathy CO, Calderon RL, Thomas DJ (eds) Arsenic exposure and health effects, vol. V. Elsevier, New York, pp 255–266

    Chapter  Google Scholar 

  43. Shiobara Y, Ogra Y, Suzuki KT (2001) Animal species difference in the uptake of dimethylarsinous acid (DMA(III)) by red blood cells. Chem Res Toxicol 14:1446–1452

    Article  CAS  PubMed  Google Scholar 

  44. Lu M, Wang H, Li XF, Arnold LL, Cohen SM, Le XC (2007) Binding of dimethylarsinous acid to cys-13alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood. Chem Res Toxicol 20:27–37

    Article  CAS  PubMed  Google Scholar 

  45. Fangstrom B, Moore S, Nermell B, Kuenstl L, Goessler W, Grander M, Kabir I, Palm B, Arifeen SE, Vahter M (2008) Breast-feeding protects against arsenic exposure in Bangladeshi infants. Environ Health Perspect 116:963–969

    Article  PubMed  CAS  Google Scholar 

  46. Sternowsky HJ, Moser B, Szadkowsky D (2002) Arsenic in breast milk during the first 3 months of lactation. Int J Hyg Environ Health 205:405–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Scientific Foundation of China through grant number (NSFC) 30530640 and 30771865.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifan Sun.

Additional information

The experimental animals used in this study are approved by the Committee for Animal Research of China Medical University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, S., Jin, Y., Lv, X. et al. Distribution and Speciation of Arsenic by Transplacental and Early Life Exposure to Inorganic Arsenic in Offspring Rats. Biol Trace Elem Res 134, 84–97 (2010). https://doi.org/10.1007/s12011-009-8455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8455-1

Keywords

Navigation