Effects of Selenium and L-Carnitine on Oxidative Stress in Blood of Rat Induced by 2.45-GHz Radiation from Wireless Devices

Abstract

The levels of blood lipid peroxidation, glutathione peroxidase, reduced glutathione, and vitamin C were used to follow the level of oxidative damage caused by 2.45 GHz electromagnetic radiation in rats. The possible protective effects of selenium and L-carnitine were also tested and compared to untreated controls. Thirty male Wistar Albino rats were equally divided into five groups, namely Groups A1 and A2: controls and sham controls, respectively; Group B: EMR; Group C: EMR + selenium, Group D: EMR + L-carnitine. Groups B–D were exposed to 2.45 GHz electromagnetic radiation during 60 min/day for 28 days. The lipid peroxidation levels in plasma and erythrocytes were significantly higher in group B than in groups A1 and A2 (p < 0.05), although the reduced glutathione and glutathione peroxidase values were slightly lower in erythrocytes of group B compared to groups A1 and A2. The plasma lipid peroxidation level in group A2 was significantly lower than in group B (p < 0.05). Erythrocyte reduced glutathione levels (p < 0.01) in group B; erythrocyte glutathione peroxidase activity in group A2 (p < 0.05), group B (p < 0.001), and group C (p < 0.05) were found to be lower than in group D. In conclusion, 2.45 GHz electromagnetic radiation caused oxidative stress in blood of rat. L-carnitine seems to have protective effects on the 2.45-GHz-induced blood toxicity by inhibiting free radical supporting antioxidant redox system although selenium has no effect on the investigated values.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CAT:

catalase

EMR:

electromagnetic radiation

GSH:

glutathione

GSH-Px:

glutathione peroxidase

ip:

intraperitoneally

L-CAR:

L-carnitine

LP:

lipid peroxidation

MDA:

malondialdehyde

RF:

radio frequency

ROS:

reactive oxygen species

SAR:

specific absorption rate

Se:

selenium

SOD:

superoxide dismutase

References

  1. 1.

    Maoquan LI, Yanyan W, Yanwen Z, Zhou Z, Zhengping YU (2008) Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. J Radial Res 49:163–170

    Article  Google Scholar 

  2. 2.

    Koyu A, Nazıroglu M, Ozguner F, Yilmaz HR, Uz E, Cesur G (2005) Caffeic acid phenethyl ester modulates 1800 MHz microwave-ınduced oxidative stress in rat liver. Electromagn Biol Med 24:135–142

    Article  CAS  Google Scholar 

  3. 3.

    Wang J, Sakurai T, Koyama S, Komatubara Y, Suzuki Y, Taki M, Miyakoshi J (2005) Effects of 2450 MHz electromagnetic fields with a wide range of SARs on methylcholanthrene-induced transformation in C3H10T1/2 cells. J Radial Res 46:351–361

    Article  CAS  Google Scholar 

  4. 4.

    Crouzier D, Testylier G, Perrin A, Debouzy JC (2007) Which neurophysiologic effects at low level 2.45 GHz RF exposure? Pathol Biol (Paris) 55:235–41

    CAS  Google Scholar 

  5. 5.

    Aweda MA, Gbenebitse, S, Meidinyo RO (2003) Effects of 2.45 GHz microwave exposures on the peroxidation status in Wistar rats. Niger Postgrad Med J 10:243–246

    CAS  PubMed  Google Scholar 

  6. 6.

    Omura Y, Losco M (1993) Electro-magnetic fields in the home environment (color TV, computer monitor, microwave oven, cellular phone, etc) as potential contributing factors for the induction of oncogen C-fos Ab1, oncogen C-fos Ab2, alpha 5 beta 1 and development of cancer, as well as effects of microwave on amino acid composition of food and living human brain. Acupunct Electrother Res 18:33–73

    CAS  PubMed  Google Scholar 

  7. 7.

    Murphy JC, Kaden DA, Warren J, Sivak A (1993) International commission for protection against environmental mutagens and carcinogens. Power frequency electric and magnetic fields: a review of genetic toxicology. Mutat Res 296:221–240

    CAS  PubMed  Google Scholar 

  8. 8.

    Kim MJ, Rhee SJ (2004) Green tea catechins protect rats from microwave-induced oxidative damage to heart tissue. J Med Food 7:299–304

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Moustafa YM, Moustafa RM, Beacy A, Abou-El-Ela SH, Ali FM (2001) Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal 26:605–608

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Irmak MK, Fadillioglu E, Gulec M, Erdogan H, Yagmurca M, Akyol O (2002) Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 20:279–283

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Naziroglu M, Simsek M, Kutlu M (2004) Moderate exercise with dietary vitamin C and E combination protects streptozotocininduced oxidative damage to the blood and improves fetal outcomes in pregnant rats. Clin Chem Lab Med 42:511–517

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Naziroglu M, Karaoglu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    CAS  PubMed  Google Scholar 

  14. 14.

    Inazu M, Matsumiya T (2008) Physiological functions of carnitine and carnitine transporters in the central nervous system. Nihon Shinkei Seishin Yakurigaku Zasshi. 28:113–20

    CAS  PubMed  Google Scholar 

  15. 15.

    Dutta A, Ray K, Singh VK, Vats P, Singh SN, Singh SB. (2008) L-carnitine supplementation attenuates intermittent hypoxia induced oxidative stress and delays muscle fatigue in rats. Exp Physiol 93:1139–1146

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Faraone A, Ballen M, Bit-Babik G, Gressner AV, Kanda MY, Swicord ML, Chou CK. (2004). RF dosimetry fort he ferris-wheel mouse exposure system. Motorola Labs Final Report, August.

  17. 17.

    Koylu H, Mollaoglu H, Ozguner F, Naziroglu M, Delibas N (2006) Melatonin modulates 900 MHz microwave-induced lipid peroxidation changes in rat brain. Toxicol Ind Health 22:211–216

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation (malonyldialdehyde) in biological fluids. Anal Biochem 16:359–364

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Eren I, Naziroglu M, Demirdaş A (2007) Protective effects of lamotrigine, aripirazole and escitalopram on depression- induced oxidative stress in rat brain. Neurochem Res 32:1188–1195

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Sedlak J, Lindsay RHC (1968) Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmann’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Naziroglu M (2003) Enhanced testicular antioxidant capacity in streptozotocin induced diabetic rats: protective role of vitamins C, E and selenium. Biol Trace Elem Res 94:61–71

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Lawrence RA, Burk RF. (1971) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  Google Scholar 

  23. 23.

    Cannan RK (1958) Proposal for a certified standard for use in hemoglobinometry; second and final report. Clin Chem 4:246–51

    CAS  PubMed  Google Scholar 

  24. 24.

    Jagota SK, Dani HM (1982) A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal Biochem 127:178–182

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Braune S, Wrocklage C, Raczek J, Galius T, Lucking CH (1998) Resting blood pressure increase during exposure to a radio frequency electromagnetic field. Lancet 351:1857–1858

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, Keskin S (2007) Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res 1169:120–124.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Halliwell B, Gutteridge JMC (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet 1:1396–1397

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Halliwell B, Gutteridge JMC (1999) Free radicals, other reactive species and disease. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine, 3rd edn. Oxford University Press, New York, pp 639–645

    Google Scholar 

  29. 29.

    Naziroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Reznick AZ, Kagan VE, Ramsey R, Tsuchiya M, Khwaja S, Serbinova EA, Packer L (1992) Antiradical effects in L-propionyl carnitine protection of the heart against ischemia-reperfusion injury: the possible role of iron chelation. Arch Biochem Biophys 296:394–401

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Rani PJ, Panneerselvam C (2001) Effect of L-carnitine on brain lipid peroxidation and antioxidant enzymes in old rats. J. Gerontol. A. Biol. Sci. Med. Sci. 2002, 57, 134–137

    Google Scholar 

  32. 32.

    Arockia-Rani PJ, Panneerselvam C. (2001) Carnitine as a free radical scavenger in ageing. Exp Gerontol 36:1713–1726

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Esposti D, Mariani M, Demartini G, Lucini V, Fraschini F, Mancia M (1994) Modulation of melatonin secretion by acetyl-L-carnitine in adult and old rats. J Pineal Res 17:132–136

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Olatunji-Bello II, Reiter RJ (1997) Effect of acute acetyl-l-carnitine treatment on daytime melatonin synthesis in the rat. Afr J Med Sci 26:175–177

    CAS  Google Scholar 

  35. 35.

    Pessotto P, Liberati R, Petrella O, Romanelli L, Calvani M, Peluso G (1997) In experimental diabetes the decrease in the eye of lens carnitine levels is an early important and selective event. Exp Eye Res 64:195–201

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Kocer I, Taysi S, Ertekin MV, Karslioglu I, Gepdiremen A, Sezen O, Serifoglu K (2007) The effect of L-carnitine in the prevention of ionizing radiation-induced cataracts: a rat model. Graefes Arch Clin Exp Ophthalmol 245:588–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mustafa Naziroglu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gumral, N., Naziroglu, M., Koyu, A. et al. Effects of Selenium and L-Carnitine on Oxidative Stress in Blood of Rat Induced by 2.45-GHz Radiation from Wireless Devices. Biol Trace Elem Res 132, 153 (2009). https://doi.org/10.1007/s12011-009-8372-3

Download citation

Keywords

  • 2.45 GHz electromagnetic radiation
  • Oxidative stress
  • Glutathione peroxidase
  • Vitamin C
  • L-carnitine
  • Selenium