Selenoprotein W Modulates Control of Cell Cycle Entry

  • Wayne Chris Hawkes
  • Thomas T. Y. Wang
  • Zeynep Alkan
  • B. Diane Richter
  • Kevin Dawson


The present study was conducted to identify targets of selenium (Se) provided to cultured human cells in physiologically relevant doses and forms. Breast and prostate epithelial cells were supplemented with Se provided as 100 nM sodium selenite or high-Se serum and gene expression was profiled with DNA microarrays. Pure sodium selenite affected expression of 560 genes in MCF-10A breast cells, including 60 associated with the cell cycle (p = 2.8 × 10−16). Selenoprotein W (SEPW1) was the only selenoprotein messenger RNA (mRNA) increased by both sodium selenite (specific) and high-Se serum (physiologic). SEPW1 small interfering RNA inhibited G1-phase progression and increased G1-phase gene transcripts, while decreasing S-phase and G2/M-phase gene transcripts, indicating the cell cycle was interrupted at the G1/S transition. SEPW1 mRNA levels were maximal during G1-phase, dropped after the G1/S transition and increased again after G2/M-phase. SEPW1-underexpressing prostate cells had increased mRNA for BCL2, which can induce a G1 arrest, and decreased mRNA for RBBP8 and KPNA2, which modulate the Rb/p53 checkpoint pathway. These results suggest that SEPW1 and the G1/S transition are physiological targets of Se in breast and prostate epithelial cells.


Selenium Cancer G1/S transition Cell cycle entry Nutrition Chemoprevention 





selenoprotein W


glutathione peroxidase


fetal bovine serum


significance analysis of microarrays


gene ontology


reverse transcriptase-polymerase chain reaction


phosphate-buffered saline


retinoblastoma binding protein 8


karyopherin alpha 2 (RAG cohort 1, importin alpha 1)


B cell CLL/lymphoma 2


translocated promoter region [to activated MET oncogene]


met proto-oncogene [hepatocyte growth factor receptor]

Supplementary material

12011_2009_8367_MOESM1_ESM.xls (125 kb)
Supplemental Table S1. Affymetrix DNA microarray probe sets affected by 100 nM selenite in MCF-10A cells. (XLS 125 kb)
12011_2009_8367_MOESM2_ESM.xls (154 kb)
Supplemental Table S2. Affymetrix DNA microarray probe sets affected by all three species of SEPW1 siRNA in RWPE-1 cells. (XLS 154 kb)


  1. 1.
    G. N. Schrauzer, D. A. White, and C. J. Schneider, Cancer mortality correlation studies--III: statistical associations with dietary selenium intakes. Bioinorg. Chem., 7:23–31. (1977).Google Scholar
  2. 2.
    G. N. Schrauzer and W. J. Rhead, Interpretation of the methylene blue reduction test of human plasma and the possible cancer protecting effect of selenium. Experientia, 27:1069–1071 (1971).CrossRefPubMedGoogle Scholar
  3. 3.
    G. F. Combs, Jr., Current evidence and research needs to support a health claim for selenium and cancer prevention. J. Nutr., 135:343–347 (2005).PubMedGoogle Scholar
  4. 4.
    J. Gromadzinska, E. Reszka, K. Bruzelius, W. Wasowicz, and B. Akesson, Selenium and cancer: biomarkers of selenium status and molecular action of selenium supplements. Eur. J. Nutr., 47 Suppl 2:29–50 (2008).Google Scholar
  5. 5.
    C. Ip, Y. Dong, and H. E. Ganther, New concepts in selenium chemoprevention. Cancer Metastasis Rev., 21:281–289 (2002).CrossRefPubMedGoogle Scholar
  6. 6.
    G. N. Schrauzer, Trace elements in carcinogenesis. In: H. H. Draper (ed.), Adv. Nutr. Res., Vol. 2:pp. 219–244. New York: Plenum, (1979).Google Scholar
  7. 7.
    L. V. Papp, J. Lu, A. Holmgren, and K. K. Khanna, From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal., 9:775–806 (2007).CrossRefPubMedGoogle Scholar
  8. 8.
    J. G. Yang, K. E. Hill, and R. F. Burk, Dietary selenium intake controls rat plasma selenoprotein p concentration. J. Nutr., 119:1010–1012 (1989).PubMedGoogle Scholar
  9. 9.
    D. Behne, A. Kyriakopoulos, H. Gessner, B. Walzog, and H. Meinhold, Type i iodothyronine deiodinase activity after high selenium intake and relations between selenium and iodine metabolism in rats. J. Nutr., 122:1542–1546 (1992).PubMedGoogle Scholar
  10. 10.
    C. Ip, Selenium inhibition of chemical carcinogenesis. Fed. Proc., 44:2573–2578 (1985).PubMedGoogle Scholar
  11. 11.
    V. Diwadkar-Navsariwala, G. S. Prins, S. M. Swanson, L. A. Birch, V. H. Ray, S. Hedayat, D. L. Lantvit, and A. M. Diamond, Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Proc. Natl. Acad. Sci. U. S. A., 103:8179–8184 (2006).Google Scholar
  12. 12.
    R. Irons, B. A. Carlson, D. L. Hatfield, and C. D. Davis, Both selenoproteins and low molecular weight selenocompounds reduce colon cancer risk in mice with genetically impaired selenoprotein expression. J. Nutr., 136:1311–1317 (2006).PubMedGoogle Scholar
  13. 13.
    D. Ratnasinghe, J. A. Tangrea, M. R. Andersen, M. J. Barrett, J. Virtamo, P. R. Taylor, and D. Albanes, Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res., 60:6381–6383. (2000).Google Scholar
  14. 14.
    Y. Ichimura, T. Habuchi, N. Tsuchiya, L. Wang, C. Oyama, K. Sato, H. Nishiyama, O. Ogawa, and T. Kato, Increased risk of bladder cancer associated with a glutathione peroxidase 1 codon 198 variant. J. Urol., 172:728–732. (2004).Google Scholar
  15. 15.
    Y. J. Hu and A. M. Diamond, Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res., 63:3347–3351. (2003).Google Scholar
  16. 16.
    G. Ravn-Haren, A. Olsen, A. Tjonneland, L. O. Dragsted, B. A. Nexo, H. Wallin, K. Overvad, O. Raaschou-Nielsen, and U. Vogel, Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis, 14:14 (2005).Google Scholar
  17. 17.
    J. A. Knight, U. V. Onay, S. Wells, H. Li, E. J. Shi, I. L. Andrulis, and H. Ozcelik, Genetic variants of GPX1 and SOD2 and breast cancer risk at the Ontario site of the Breast Cancer Family Registry. Cancer Epidemiol. Biomarkers Prev., 13:146–149. (2004).Google Scholar
  18. 18.
    M. Udler, A. T. Maia, A. Cebrian, C. Brown, D. Greenberg, M. Shah, C. Caldas, A. Dunning, D. Easton, B. Ponder, and P. Pharoah, Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer. J. Clin. Oncol., 25:3015–3023 (2007).CrossRefPubMedGoogle Scholar
  19. 19.
    W. C. Hawkes and M. A. Kutnink, High-performance liquid chromatographic-fluorescence determination of traces of selenium in biological materials. Anal. Biochem., 241:206–211 (1996).CrossRefPubMedGoogle Scholar
  20. 20.
    P. Pozarowski and Z. Darzynkiewicz, Analysis of cell cycle by flow cytometry. Methods Mol. Biol., 281:301-311 (2004).PubMedGoogle Scholar
  21. 21.
    Affymetrix, Affymetrix GeneChip Expression Analysis Technical Manual, Santa Clara, CA: Affymetrix, (2004).Google Scholar
  22. 22.
    W. M. Liu, R. Mei, X. Di, T. B. Ryder, E. Hubbell, S. Dee, T. A. Webster, C. A. Harrington, M. H. Ho, J. Baid, and S. P. Smeekens, Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics, 18:1593–1599 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    G. Dennis, Jr., B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane, and R. A. Lempicki, DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol., 4:P3 (2003).Google Scholar
  24. 24.
    S. Krull, J. Thyberg, B. Bjorkroth, H. R. Rackwitz, and V. C. Cordes, Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell, 15:4261–4277 (2004).CrossRefPubMedGoogle Scholar
  25. 25.
    S. Shibata, Y. Matsuoka, and Y. Yoneda, Nucleocytoplasmic transport of proteins and poly(A) + RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells, 7:421–434 (2002).CrossRefPubMedGoogle Scholar
  26. 26.
    M. Park, M. Dean, C. S. Cooper, M. Schmidt, S. J. O'Brien, D. G. Blair, and G. F. Vande Woude, Mechanism of met oncogene activation. Cell, 45:895-904 (1986).Google Scholar
  27. 27.
    J. J. Champoux, DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem., 70:369-413 (2001).CrossRefPubMedGoogle Scholar
  28. 28.
    R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, and T. P. Speed, Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4:249-264 (2003).CrossRefPubMedGoogle Scholar
  29. 29.
    V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U. S. A., 98:5116–5121. (2001).Google Scholar
  30. 30.
    Z. Bar-Joseph, Z. Siegfried, M. Brandeis, B. Brors, Y. Lu, R. Eils, B. D. Dynlacht, and I. Simon, Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc. Natl. Acad. Sci. U. S. A., 105:955–960 (2008).Google Scholar
  31. 31.
    W. C. Hawkes, E. C. Wilhelmsen, and A. L. Tappel, Abundance and tissue distribution of selenocysteine-containing proteins in the rat. J. Inorg. Biochem., 23:77–92 (1985).CrossRefPubMedGoogle Scholar
  32. 32.
    E. L. Patterson, R. Milstrey, and E. L. R. Stokstad, Effect of selenium in preventing exudative diathesis in chicks. Proc. Soc. Exp. Biol. Med., 95:617 (1957).Google Scholar
  33. 33.
    K. Schwarz and C. M. Foltz, Selenium as an integral part of Factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 79:3292 (1957).Google Scholar
  34. 34.
    U. F. Neumann and K. Bronsch, Studies on the optimum selenium supplementation of nongravid and gravid sows. J. Vet. Med. Ser. A, 35:673–682 (1988).Google Scholar
  35. 35.
    B. E. R. Sandstrom, J. Carlsson, and S. L. Marklund, Variations among cultured cells in glutathione peroxidase activity in response to selenite supplementation. Biochim. Biophys. Acta, 929:148–153 (1987).CrossRefPubMedGoogle Scholar
  36. 36.
    M. H. Lewin, J. R. Arthur, R. A. Riemersma, F. Nicol, S. W. Walker, E. M. Millar, A. F. Howie, and G. J. Beckett, Selenium supplementation acting through the induction of thioredoxin reductase and glutathione peroxidase protects the human endothelial cell line EAhy926 from damage by lipid hydroperoxides. Biochim. Biophys. Acta, 1593:85–92. (2002).Google Scholar
  37. 37.
    A. A. Sneddon, H. C. Wu, A. Farquharson, I. Grant, J. R. Arthur, D. Rotondo, S. N. Choe, and K. W. Wahle, Regulation of selenoprotein GPx4 expression and activity in human endothelial cells by fatty acids, cytokines and antioxidants. Atherosclerosis, 171:57–65 (2003).CrossRefPubMedGoogle Scholar
  38. 38.
    W. Zhong and T. D. Oberley, Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res., 61:7071–7078 (2001).PubMedGoogle Scholar
  39. 39.
    B. D. Arenholt, M. Abdulla, A. Jepsen, and E. J. Pedersen, Effect of organic and inorganic selenium on human keratinocytes. Trace Elem. Med., 5:29–34 (1988).Google Scholar
  40. 40.
    M. R. Kafai and V. Ganji, Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: Third National Health and Nutrition Examination Survey, 1988–1994. J. Trace Elem. Med. Biol., 17:13–18 (2003).CrossRefPubMedGoogle Scholar
  41. 41.
    P. D. Whanger, Metabolism of selenium in humans. J. Trace Elem. Exp. Med., 11:227–240 (1998).Google Scholar
  42. 42.
    M. Styblo, J. Kalouskova, and J. Klas, Comparison of the kinetics of a trace and a sublethal dose of selenite in rats, with particular attention being given to blood selenium distribution. J. Trace Elem. Electrolytes Health Dis., 5:155–164 (1991).PubMedGoogle Scholar
  43. 43.
    P. D. Whanger, Selenoprotein W: a review. Cell. Mol. Life Sci., 57:1846–1852 (2000).CrossRefPubMedGoogle Scholar
  44. 44.
    H. Zeng, Selenite and selenomethionine promote HL-60 cell cycle progression. J. Nutr., 132:674–679 (2002).PubMedGoogle Scholar
  45. 45.
    A. J. Baumgarten, J. Felthaus, and R. Wasch, Strong inducible knockdown of APC/CCdc20 does not cause mitotic arrest in human somatic cells. Cell Cycle, 8:643–646 (2009).PubMedGoogle Scholar
  46. 46.
    P. D. Whanger, N. D. Pedersen, and P. H. Weswig, Selenium proteins in ovine tissues. II. Spectral properties of a 10,000 molecular weight selenium protein. Biochem. Biophys. Res. Commun., 53:1031–1035 (1973).Google Scholar
  47. 47.
    J. Bellingham, K. Gregory-Evans, M. F. Fox, and C. Y. Gregory-Evans, Gene structure and tissue expression of human selenoprotein W, SEPW1, and identification of a retroprocessed pseudogene, SEPW1P. Biochim. Biophys. Acta, 1627:140–146 (2003).PubMedGoogle Scholar
  48. 48.
    Y. Zhang and V. N. Gladyshev, Trends in selenium utilization in marine microbial world revealed through the analysis of the global ocean sampling (GOS) project. PLOS Genet., 4:e1000095 (2008).Google Scholar
  49. 49.
    M. A. Albright, OSU researcher banks on mutant mice. Corvallis Gazette-Times Online. Corvallis, Oregon, (2004).Google Scholar
  50. 50.
    Y. Dong, H. E. Ganther, C. Stewart, and C. Ip, Identification of molecular targets associated with selenium-induced growth inhibition in human breast cells using cDNA microarrays. Cancer Res., 62:708–714. (2002).Google Scholar
  51. 51.
    H. Zhang, Y. Dong, H. Zhao, J. Brooks, L. Hawthorn, N. Nowak, J. Marshall, A. Gao, and C. Ip, Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer. Cancer Genomics & Proteomics 2:97–114 (2005).Google Scholar
  52. 52.
    K. El-Bayoumy and R. Sinha, Molecular chemoprevention by selenium: A genomic approach. Mutat. Res., 591:224–236 (2005).PubMedGoogle Scholar
  53. 53.
    T. M. Cao, F. Y. Hua, C. M. Xu, B. S. Han, H. Dong, L. Zuo, X. Wang, Y. Yang, H. Z. Pan, and Z. N. Zhang, Distinct effects of different concentrations of sodium selenite on apoptosis, cell cycle, and gene expression profile in acute promyeloytic leukemia-derived NB4 cells. Ann. Hematol., 85:434–442 (2006).CrossRefPubMedGoogle Scholar
  54. 54.
    H. P. Wang, F. Q. Schafer, P. C. Goswami, L. W. Oberley, and G. R. Buettner, Phospholipid hydroperoxide glutathione peroxidase induces a delay in G1 of the cell cycle. Free Radic. Res., 37:621–630 (2003).CrossRefPubMedGoogle Scholar
  55. 55.
    T. J. Preston, W. J. Muller, and G. Singh, Scavenging of extracellular H2O2 by catalase inhibits the proliferation of HER-2/Neu-transformed rat-1 fibroblasts through the induction of a stress response. J. Biol. Chem., 276:9558–9564 (2001).CrossRefPubMedGoogle Scholar
  56. 56.
    Y. Zhang, W. Zhao, H. J. Zhang, F. E. Domann, and L. W. Oberley, Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res., 62:1205–1212 (2002).PubMedGoogle Scholar
  57. 57.
    A. Dikiy, S. V. Novoselov, D. E. Fomenko, A. Sengupta, B. A. Carlson, R. L. Cerny, K. Ginalski, N. V. Grishin, D. L. Hatfield, and V. N. Gladyshev, SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry, 46:6871–6882 (2007).CrossRefPubMedGoogle Scholar
  58. 58.
    H. Hermeking and A. Benzinger, 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol., 16:183–192 (2006).CrossRefPubMedGoogle Scholar
  59. 59.
    P. A. Savitsky and T. Finkel, Redox regulation of Cdc25C. J. Biol. Chem., 277:20535–20540 (2002).CrossRefPubMedGoogle Scholar
  60. 60.
    X. Wang and W. Dai, BRCA2 in mitotic exit: a new role in regulating genomic stability. Future Oncol., 2:43–46 (2006).CrossRefPubMedGoogle Scholar
  61. 61.
    H. Ueda, K. Kuroda, and G. Endo, The inhibitory effect of selenium on induction of tetraploidy by dimethylarsinic acid in Chinese hamster cells. Anticancer Res., 17:1939–1943 (1997).PubMedGoogle Scholar
  62. 62.
    S. Volik, B. J. Raphael, G. Huang, M. R. Stratton, G. Bignel, J. Murnane, J. H. Brebner, K. Bajsarowicz, P. L. Paris, Q. Tao, D. Kowbel, A. Lapuk, D. A. Shagin, I. A. Shagina, J. W. Gray, J. F. Cheng, P. J. de Jong, P. Pevzner, and C. Collins, Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Res., 16:394–404 (2006).CrossRefPubMedGoogle Scholar
  63. 63.
    R. J. Shamberger, F. F. Baughman, S. L. Kalchert, C. S. Willis, and G. C. Hoffman, Carcinogen-induced chromosomal breakage decreased by antioxidants. Proc. Natl. Acad. Sci. U. S. A., 70:1461–1463 (1973).Google Scholar
  64. 64.
    A. Mukherjee, A. Sharma, and G. Talukder, Effect of selenium on cadmium-induced chromosomal aberrations in bone marrow cells of mice. Toxicol. Lett., 41:23–30 (1988).CrossRefPubMedGoogle Scholar
  65. 65.
    J. K. Lin and S. F. Tseng, Chromosomal aberrations and sister-chromatid exchanges induced by n nitroso-2-acetylaminofluorene and their modifications by arsenite and selenite in chinese hamster ovary cells. Mutat. Res., 265:203–210 (1992).PubMedGoogle Scholar
  66. 66.
    E. Kowalska, S. A. Narod, T. Huzarski, S. Zajaczek, J. Huzarska, B. Gorski, and J. Lubinski, Increased rates of chromosome breakage in BRCA1 carriers are normalized by oral selenium supplementation. Cancer Epidemiol. Biomarkers Prev., 14:1302–1306. (2005).Google Scholar
  67. 67.
    M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi, KEGG for linking genomes to life and the environment. Nucleic Acids Res., 36:D480–484 (2008).CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Wayne Chris Hawkes
    • 1
  • Thomas T. Y. Wang
    • 2
  • Zeynep Alkan
    • 1
  • B. Diane Richter
    • 1
  • Kevin Dawson
    • 3
  1. 1.USDA Agricultural Research Service, Western Human Nutrition Research CenterUniversity of California at DavisDavisUSA
  2. 2.USDA Agricultural Research ServiceBeltsville Human Nutrition Research CenterBeltsvilleUSA
  3. 3.NCMHD Center for Excellence in Nutritional GenomicsUniversity of California at DavisDavisUSA

Personalised recommendations