Relevance of Non-ceruloplasmin Copper to Oxidative Stress in Patients with Hepatocellular Carcinoma

Abstract

Altered copper homeostasis and oxidative stress have been observed in patients with hepatocellular carcinoma. Non-ceruloplasmin copper, the free form, is a potent pro-oxidant than the protein bound copper. The aim of the present study was to evaluate which form of copper can be correlated with the oxidative stress in the circulation and in the malignant liver tissues of hepatocellular carcinoma patients. Hepatocellular carcinoma patients (grades II and III, n = 18) were enrolled in this study. Serum levels of total, free and bound copper, ceruloplasmin, iron, iron-binding capacity, lipid peroxidation products, and enzymatic and non-enzymatic antioxidants were quantified in serum and in malignant liver tissues and compared with those of normal samples (n = 20). A significant positive correlation between the serum non-ceruloplasmin copper and lipid peroxidation products and negative correlation with antioxidants were observed in hepatocellular carcinoma patients. In liver tissue, glutathione peroxidase, superoxide dismutase, and catalase activity were significantly decreased with concomitant elevation in oxidative stress markers. Our experiment revealed that the elevation in non-ceruloplasmin copper has high relevance with the oxidative stress than the bound copper.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Clark HP, Carson WF, Kavanagh PV, Ho CP, Shen (2005). Staging and current treatment of hepatocellular carcinoma. Radiographics. 25Suppl 1:S3–23 (Review: S3–23).

    PubMed  Article  Google Scholar 

  2. 2.

    EI-Serag HB, Mason AC (1999). Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 340: 745–509.

    Article  Google Scholar 

  3. 3.

    Chopra P, Vijayaragvan M, Nayak NC (1987). Significance of liver cell dysplasia in cirrhosis and hepatocellular carcinoma. Indian J Med Res. 6:382–90.

    Google Scholar 

  4. 4.

    Sheila Sherlock and James Dooley (2002). Diseases of the liver and biliary system. Eleventh Edition 2002 by Blackwell Science LTD a Blackwell Publishing.

    Google Scholar 

  5. 5.

    Wiseman H, Halliwell B (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 313: 7–29.

    Google Scholar 

  6. 6.

    Farinati F, Cardin R, Bortolami M, Burra P, Russo FP (2007). Hepatitis C virus: from oxygen free radicals to hepatocellular carcinoma. J Viral Hepatitis. 4: 21–99.

    Google Scholar 

  7. 7.

    Yang LY, Chen WL, Lin JW, Lee SF, Lee CC (2005). Differential expression of antioxidant enzymes in various hepatocellular carcinoma cell lines. J Cell Biochem. 6: 622–631.

    Article  Google Scholar 

  8. 8.

    Halliwell BM, Gutterige JMC (2007). Free radicals in biology and medicine 4th Edition. Oxford University Press, New York.

    Google Scholar 

  9. 9.

    Kubo S, Fukuda H, Ebara M, Ikota N, Saisho H (2005). Evaluation of distribution patterns for copper and zinc in metallothionein and superoxide dismutase in chronic liver diseases and hepatocellular carcinoma using high-performance liquid chromatography (HPLC). Biol Pharm Bull. 28: 1137–41.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Hu GF (1998). Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 69: 326–35

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Valko M, Morris H, Cronin MT (2005). Metals, toxicity and oxidative stress. Curr Med Chem. 12: 1161–1208.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Evenson MA, Warren BL (1975). Determination of serum copper by atomic absorption, with use of the graphite cuvette. Clin Chem. 21: 619–25.

    PubMed  CAS  Google Scholar 

  13. 13.

    Carthew GW, Dey RL (1985). A rapid tissue extraction method for determining liver copper content by atomic absorption spectroscopy. N Z Vet J. 33: 168–70.

    PubMed  CAS  Google Scholar 

  14. 14.

    Ramsay WN (1953). The determination of iron in blood plasma or serum. Biochem J. 53: 227–31.

    PubMed  CAS  Google Scholar 

  15. 15.

    Sunderman FW, Nomoto S (1970). Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin Chem. 16: 903–10.

    PubMed  CAS  Google Scholar 

  16. 16.

    Walshe JM (2003). Wilson’s disease: the importance of measuring serum ceruloplasmin non-immunologically. Ann Clin Biochem. 40: 115–21.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Gaffney D, Fell GS, O’Reilly DS (2000). ACP Best Practice no. 163. Wilson’s disease: acute and presymptomatic laboratory diagnosis and monitoring. J Clin Pathol. 53: 807–812.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Ramsay WN (1954). An improved technique for the determination of plasma iron. Biochem. J: 57 (328th meeting): xvii.

    CAS  Google Scholar 

  19. 19.

    Draper HH, Hadley M (1990). Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 46: 421–31.

    Article  Google Scholar 

  20. 20.

    Jiang ZY, Hunt JV, Wolff SP (1992). Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem. 202: 384–9.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Miranda KM, Espey MG, Wink DA (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric oxide. 5: 62–71.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Cook JA, Kim SY, Teague D, Krishna MC, Pacelli R (1996). Convenient colorimetric and fluorometric assays for S-nitrosothiols. Anal Biochem. 238: 150–8.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R (1998). 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J. 330: 95–801.

    Google Scholar 

  24. 24.

    Kakkar P, Das B, Viswanathan PN (1984). A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 21: 30–2.

    Google Scholar 

  25. 25.

    Sinha AK (1972). Colorimetric assay of catalase. Anal Biochem. 47, 89–94.

    Article  Google Scholar 

  26. 26.

    Flohe L, Gunzler WA (1984). Assays of glutathione peroxidase. Methods Enzymol 5: 114–21.

    Article  Google Scholar 

  27. 27.

    Misra HP, Fridovich I (1977). Superoxide dismutase: “positive” spectro-photometric assays. Anal Biochem. 79: 553–60.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Moron MS, Depierre JW, Mannervik B (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 582: 67–78.

    PubMed  CAS  Google Scholar 

  29. 29.

    Baker H, Frank O, De Angelis B, Feingold S (1980). Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int. 21:531–6.

    CAS  Google Scholar 

  30. 30.

    Jacob RA (1990). Assessment of human vitamin C status. J Nutr. 120: 1480–5.

    PubMed  CAS  Google Scholar 

  31. 31.

    Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248–54.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Poo JL, Rosas-Romero R, Montemayar AC, Isoard F, Uribe M (2003). Diagnostic value of the copper/zinc ratio in hepatocellular carcinoma: a case control study. J Gastroenterol. 38: 45–51.

    PubMed  Article  Google Scholar 

  33. 33.

    Lowndes SA, Harris AL (2005). The role of copper in tumor angiogenesis. J Mammary Gland Biol Neoplasia. 10: 299–310.

    PubMed  Article  Google Scholar 

  34. 34.

    Wu T, Sempos CT, Freudenheim JL, Muti P, Smit E (2004). Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol. 14: 195–201.

    PubMed  Article  Google Scholar 

  35. 35.

    Goodman VL, Brewer GJ, Merajver SD (2004). Copper deficiency as an anti-cancer strategy. Endocr Relat Cancer. 11: 255–63.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Brewer GJ (2003). Copper-lowering therapy with tetrathiomolybdate for cancer and diseases of fibrosis and inflammation. J Trace Elements and Exp Med. 164: 191–99.

    Article  CAS  Google Scholar 

  37. 37.

    Oqihara H, Oqihara T, Miki M, Yasuda H, Mino M (1995). Plasma copper and antioxidant status in Wilson’s disease. Pediatr Res. 37: 219–26.

    Google Scholar 

  38. 38.

    Geetha A, Jeyachristy SA, Selvamathy SM, Ilavarasi S, Surendran R (2007). A study on the concentrations of serum zinc, non-ceruloplasmin copper, reactive oxygen and nitrogen species in children with Wilson’s disease. Clin Chim Acta. 383: 165–7.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Babiloni C, Squitti R, Del Percio C, Cassetta E, Ventriqlia MC (2007). Free copper and resting temporal EEG rhythms correlate across healthy, mild cognitive impairment, and Alzheimer’s disease subjects. Clin Neurophysiol. 118: 1244–60.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Das D, Tapryal N, Goswami SK, Fox PL, Mukhopadhvay CK (2007). Regulation of ceruloplasmin in human hepatic cells by redox active copper: identification of a novel AP-1 site in the ceruloplasmin gene. Biochem J. 402 1: 135–41.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Battisti C, Formichi P, Tripodi SA, Vindigni C, Roviello F (2000). Vitamin E serum levels and gastric cancer: results from a cohort of patients in Tuscany, Italy. Cancer Lett. 151(1): 15–8.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Ohshima H, Bartsch H (1994). Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 305(2): 253–64.

    PubMed  CAS  Google Scholar 

  43. 43.

    Wang YZ, Cao YQ, Wu JN, Chen M, Cha XY (2005). Expression of nitric oxide synthase in human gastric carcinoma and its relation to p53, PCNA. World J Gastroenterol. 11: 46–50.

    PubMed  CAS  Google Scholar 

  44. 44.

    Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW (1996). Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul. 34: 159–87.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S (2006). Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol. 2: 486–93.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Kooy NW, Royall JA, Ye YZ, Kelly DR, Beckman JS (1995). Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med. 151: 1250–4.

    PubMed  CAS  Google Scholar 

  47. 47.

    Haddad IY, Pataki G, Hu P, Galliani C, Beckman JS, (1994). Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest. 94: 2407–13.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Rennenberg H (1982). Glutathione metabolism and possible roles in higher plants. Phytochem. 21: 2771–2781.

    Article  CAS  Google Scholar 

  49. 49.

    Hultberg M, Isaksson A, Andersson A, Hultberg B (2007). Traces of copper ions deplete glutathione in human hepatoma cell cultures with low cysteine content. Chem Biol Interact. 167: 56–62.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Estrela Jm, Ortega A, Obrador E (2006). Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci. 43: 143–81.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Kawamura T, Ohisa Y, Abe Y, Ishimori A, Shineha R (1992). Plasma lipid peroxides in the operation of esophageal cancer. Rinsho Byori. 40: 881–4.

    PubMed  CAS  Google Scholar 

  52. 52.

    Yasuda M, Takesue F, Inutsuka S, Honda M, Nozoe T (2002). Prognostic significance of serum superoxide dismutase activity in patients with gastric cancer. Gastric Cancer. 5: 148–153.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Izutani R, Asano S, Imano M, Kuroda D, Katao M (1998). Expression of manganese superoxide dismutase in esophageal and gastric cancers. J Gastroenterol. 33: 816–822.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 10: 2495–2505.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Uhlig S, Wendel A (1992). The physiological consequences of glutathione variations. Life Sci. 51: 1083–94.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Xu D, Du W, Zhao L, Davey AK, Wang J (2008). The neuroprotective effects of isosteviol against focal cerebral ischemia injury induced by middle cerebral artery occlusion in rats. Planta Med. 74: 816–21.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arumugam Geetha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geetha, A., Saranya, P., Annie Jeyachristy, S. et al. Relevance of Non-ceruloplasmin Copper to Oxidative Stress in Patients with Hepatocellular Carcinoma. Biol Trace Elem Res 130, 229–240 (2009). https://doi.org/10.1007/s12011-009-8338-5

Download citation

Keywords

  • Hepatocellular carcinoma
  • Ceruloplasmin
  • Non-ceruloplasmin copper
  • Oxidative stress
  • Antioxidants