Skip to main content

Advertisement

Log in

Mutagenic and Genotoxic Effects of cis-(Dichloro)tetraammineruthenium(III) Chloride on Human Peripheral Blood Lymphocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chemotherapeutic agents play an important role in cancer treatment mostly due their systemic action on human organism allowing access to liquid tumors and even metastases. Among these drugs, ruthenium compounds have been showing promising results to treat tumors and represent an important development of new antitumor therapy. This study presents the evaluation of cis-(dichloro)tetraammineruthenium(III) chloride, cis-[RuCl2(NH3)4]Cl, genotoxic effects using human peripheral blood lymphocytes cultured in vitro. Mitotic index (MI), chromosome aberrations (CA), and DNA damage using the comet assay were analyzed. MI in human peripheral blood lymphocyte cultures treated with 1, 10, 100, and 1,000 μg mL−1 cis-[RuCl2(NH3)4]Cl were 5.9%, 4.6%, 3.9%, and 0%, respectively. Doxorubicin chloridate was used as the positive control. CA derived from 1, 10, and 100 μg mL−1 concentrations were defined as spontaneous when compared with the negative control, and at the concentration of 1,000 μg mL−1, the cell cycle was inhibited (IM = 0%). Results obtained for the comet assay using cis-[RuCl2(NH3)4]Cl suggest that this compound has no genotoxic activity against cultured human peripheral blood lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C.S. Allardyce and P.J. Dyson, Ruthenium in medicine: current clinical uses and future prospects, Plat. Met. Rev. 45, 6–69 (2001).

    Google Scholar 

  2. A. Cuin, A.C. Massabni, C.Q.F. Leite, D.N. Sato, A. Neves, B. Szpoganicz, M.S. Silva and A.J. Bortoluzzi, Synthesis, X-ray structure and antimycobacterial activity of silver complexes with a-hydroxycarboxylic acids, J. Inorg. Biochem. 101, 291–296 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. V. Brabec and O. Nováková, DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity, Drug Resist. Updat. 9, 111–122 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. G. Sava, S. Pacor, F. Bregant, V. Ceschia and G. Mestroni, Metal complexes of ruthenium: antineoplastic properties and perspectives, Anti-cancer Drugs 1, 99–108 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. G. Sava and A. Bergamo, Ruthenium-based compounds and tumour growth control, Int. J. Oncol. 17, 353–365 (2000).

    PubMed  CAS  Google Scholar 

  6. M.J. Clarke, Ruthenium metallopharmaceuticals, Coord. Chem. Rev 236, 209–233 (2003).

    Article  CAS  Google Scholar 

  7. M. Galanski, V.B. Arion, M.A. Jakupec and B.K. Keppler, Recent developments in the field of tumor-inhibiting metal complexes, Curr. Pharm. Des. 9, 2078–2089 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. E. Alessio, G. Mestroni, A. Bergamo and G. Sava, Ruthenium anticancer drugs, in: A. Sigel and H. Sigel (Eds.), Metal ions in biological systems. Metal complexes in tumor diagnosis and as anticancer agents, v. 42, Marcel Dekker, New York, pp. 323–351 (2004).

    Google Scholar 

  9. E. Alessio, G. Mestroni, A. Bergamo and G. Sava, Ruthenium antimetastatic agents, Curr. Top. Med. Chem. 4, 1525–1535 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. G. Sava, I. Capozzi, V. Clerici, G. Gagliardi, E. Alessio and G. Mestroni, Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex, Clin. Exp. Metast. 16, 371–379 (1998).

    Article  CAS  Google Scholar 

  11. G. Sava, E. Alessio, A. Bergamo and G. Mestroni, Sulfoxide ruthenium complexes: non-toxic tools for the selective treatment of solid tumour metastases, in: M.J. Clarke and P.J. Sadler (Eds.), Topics in biological inorganic chemistry, v. 1, Springer, Berlin, pp. 143–169 (1999).

    Google Scholar 

  12. G. Sava, K. Clerici, I. Capozzi, M. Cocchietto, R. Gagliardi, E. Alessio, G. Mestroni and A. Perbellini, Reduction of lung metastasis by ImH[trans-RuCl4(DMSO)Im]: mechanism of the selective action investigated on mouse tumors, Anti Cancer Drugs 10, 129–138 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. G. Sava, R. Gagliardi, A. Bergamo, E. Alessio and G. Mestroni, Treatment of metastases of solid mouse tumours by NAMI-A: comparison with cisplatin, cyclophosphamide and dacarbazine, Anticancer Res. 19, 969–972 (1999).

    PubMed  CAS  Google Scholar 

  14. A. Bergamo, S. Zorzet, B. Gava, A. Sorc, E. Alessio, E. Iengo and G. Sava, Effects of NAMI-A and some related ruthenium complexes on cell viability after short exposure of tumor cells, Anti Cancer Drugs 11, 667–672 (2000).

    Google Scholar 

  15. M. Cocchietto and G. Sava, Blood concentration and toxicity of the antimetastasis agent NAMI-A following repeated intravenous treatment in mice, Pharmacol. Toxicol. 87, 193–197 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. G. Sava and M. Cocchietto, Blood levels of ruthenium following repeated treatments with the antimetastatic compound NAMI-A in healthy beagle dogs, In Vivo 14, 741–744 (2000).

    PubMed  CAS  Google Scholar 

  17. C.G. Hartinger, S. Zorbas-Seifried, M.A. Jakupec, B. Kynast, H. Zorbas and B.K. Keppler, From bench to bedside—preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A), J. Inorg. Biochem. 100, 891–904 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. J.M. Rademaker-Lakhai, D. van den Bongard, D. Pluim, J.H. Beijnen and J.H.M. Schellens, A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent, Clin. Cancer Res. 10, 3717–3727 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. M.A. Jakupec, V.B. Arion, S. Kapitza, E. Reisner, A. Eichinger, M. Pongratz, B. Marian, N.G. von Keyserlingk and B.K. Keppler, KP1019 (FFC14A) from bench to bedside: preclinical and early clinical development: an overview, Int. J. Clin. Pharm. Ther. 43, 595–596 (2005).

    CAS  Google Scholar 

  20. C.E.S. Barbosa, Evaluation of acute toxicity and antitumor effect of cis-tetraammine(oxalato)ruthenium(III) dithionate in murine sarcoma 180. Master’s Thesis—Federal University of Goiás, Goiânia, Goiás, Brazil, 2007.

  21. I. Kostova, Ruthenium complexes as anticancer agents, Curr Med Chem. 13, 1085–107 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. E.P. Silveira-Lacerda, Antitumoral evaluation of cis-[RuCl2(NH3)4]Cl using tumoral, human and mouse cells lineages. 67 f. Doctoral Thesis, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil, 2003.

  23. C.S.R. Menezes, L.C.G.P. Costa, V. de M.R. Ávila, M.J. Ferreira, C.U. Vieira, L.A. Pavanin, M.I. Homsi-Brandeburgo, A. Hamaguchi and E.P. Silveira-Lacerda, Analysis in vivo of antitumor activity, cytotoxicity and interaction between plasmid DNA and the cis-dichlorotetraammineruthenium(III) chloride, Chemico-Biol. Int. 167, 116–124 (2007).

    Article  CAS  Google Scholar 

  24. E. Gebhart, L. Lösing and F. Wopfner, Chromosome studies on lymphocytes of patients under cytostatic therapy. I. Conventional chromosome studies in cytostatic interval therapy, Hum. Genet., 55, 53–63 (1980).

    Article  CAS  Google Scholar 

  25. B. Lambert, K. Holmberg and N. Einhorn, Persistence of chromosome rearrangements in peripheral lymphocytes from patients treated with melphalan for ovarian carcinoma, Hum. Genet. 67, 94–98 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. B. Lambert, K. Holmberg and N. Einhorn, Chromosomal damage and second malignancy in patients treated with melphalan, in: D. Schmahl and J.M. Kaldor (Eds.), Carcinogenicity of alkylating cytostatic drugs, IARC, Lyon, pp. 147–160 (1986).

    Google Scholar 

  27. S. Gundy, M. Baki, I. Bodrogi and A. Czeizel, Persistence of chromosomal aberrations in blood lymphocytes of testicular cancer patients. I. The effect of vinblastine, cisplatin and bleomycin adjuvant therapy, Oncology, 47, 410–414 (1990).

    Article  CAS  Google Scholar 

  28. A. Schinzel and W. Schmid, Lymphocyte chromosome studies in humans exposed to chemical mutagens. The validity of the method in 67 patients under cytostatic therapy, Mutat. Res. 40, 139–166 (1976).

    Article  PubMed  CAS  Google Scholar 

  29. E. Weisburger, Bioassay program for carcinogenic hazards of cancer chemotherapeutic agents, Cancer 40, 1935–1949 (1977).

    Article  PubMed  CAS  Google Scholar 

  30. C.C. Harris, A delayed complication of cancer therapy: cancer, J. Natl. Cancer Inst. 63, 275–277 (1979).

    PubMed  CAS  Google Scholar 

  31. R.J. Albertini, D. Anderson, G.R. Douglas, L. Hagmar, K. Hemminki, F. Merlo, A.T. Natarajan, H. Norppa, D.E. Shuker, R. Tice, M.D. Waters and A. Aitio, IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety, Mutat. Res. 463, 111–172 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. R.R. Tice, E. Agurell, D. Anderson, B. Burlinson, A. Hartmann, H. Kobayashi, Y. Miyamae, E. Rojas, J.C. Ryu and Y.F. Sasaki, Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen. 35, 206–221 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. F. Faust, F. Kassie, S. Knasmüller, R.H. Boedecker, M. Mann and V. Mersch-Sundermann, The use of the alkaline comet assay with lymphocytes in human biomonitoring studies, Mutat. Res. 566, 209–229 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. L.A. Pavanin, E. Giesbrecht and E. Tfouni, Synthesis and properties of the ruthenium(I1) complexes cis-Ru(NH3)Isn)L2+. Spectra and reduction potentials, Inorganic Chemistry, 24 25, 4444–4446 (1985).

    Article  CAS  Google Scholar 

  35. P.S. Moorhead, P.C. Nowell, J. Mellman, D.M. Batipps and D.A. Hungerford, Chromosome preparations of leukocytes cultured from human peripheral blood, Exp. Cell Res. 20, 613–616 (1960).

    Article  PubMed  CAS  Google Scholar 

  36. N.P. Singh, M.T. McCoy, R.R. Tice and E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res. 175, 184–191 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. B. Burlinson, R.R. Tice, G. Speit, E. Agurell, S.Y. Brendler-Schwaab, A.R. Collins, P. Escobar, M. Honma, T.S. Kumaravel, M. Nakajima, Y.F. Sasaki, V. Thybaud, Y. Uno, M. Vasquez and A. Hartmann, Fourth international workgroup on genotoxicity testing: results of the in vivo comet assay workgroup, Mutat. Res. 627, 31–35 (2007).

    PubMed  CAS  Google Scholar 

  38. R.L. Nussbaum, R.R. McInnes and H.F. Willard, Thompson & Thompson, Genetics in Medicine. 6th Ed. Philadelphia: Saunders; 2001.

    Google Scholar 

  39. T.H. Ochi-Lohmann, K. Okazaki, M.R. Madruga, C.A. Pereira, M.N. Rabello-Gay, Radiosensitivity of blood lymphocytes from basocellular carcinoma patients, as detected by the micronucleus assay, Mutat. Res. 357, 97–106 (1996).

    PubMed  CAS  Google Scholar 

  40. P.L. Olive, G. Frazer and J.P. Banáth, Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay, Radiat. Res. 136, 130–136 (1993).

    Article  PubMed  CAS  Google Scholar 

  41. R.M. Rosa, N.C. Hoch, G.V. Furtado, J. Saffi, J.A.P. Henriques, DNA damage in tissues and organs of mice treated with diphenyl diselenide, Mut. Res. 633, 35–45 (2007).

    CAS  Google Scholar 

  42. A.R. Trzeciak, J. Barnes and K.M. Evans, A modified alkaline comet assay for measuring DNA repair capacity in human population, Radiat. Res. 169, 110–121 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. F.C. Pereira, C.A.S.T. Vilanova-Costa, A.P. Lima, A.S.B.B. Ribeiro, H.D. da Silva, L.A. Pavanin and E.P. Silveira-Lacerda, Cytotoxic and genotoxic effects of cis-tetraammine(oxalato)ruthenium(III) dithionate on the root meristem cells of Allium cepa, Biol Trace Elem Res, doi:10.1007/s12011-008-8272-y (2008).

  44. R.A. Vilaplana, F. Delmani, C. Manteca, J. Torreblanca, J. Moreno, G. García-Herdugo and F. González-Vílchez, Synthesis, interaction with double-helical DNA and biological activity of the water soluble complex cis-dichloro-1,2-propylenediamine-N,N,NN′-tetraacetato ruthenium (III) (RAP), J. Inorg. Biochem. 100, 1834–1841 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. A.M. Udayakumar and M. Krishna Bhargava, Persistence of chromosomal aberrations in blood lymphocytes 11 years after cessation of CMF therapy in a breast cancer patient, Cancer Letters 107, 1–3 (1996).

    Article  PubMed  CAS  Google Scholar 

  46. K. Baria, C. Warren, S.A. Roberts, C.M. West and D. Scott, Chromosomal radiosensitivity as a marker of predisposition to common cancers? Br. J. Cancer 84, 892–896 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. A. Padjas, D. Lesisz, A. Lankoff, A. Banasik, H. Lisowska, R. Bakalarz, S. Góźdź and A. Wojcik, Cytogenetic damage in lymphocytes of patients undergoing therapy for small cell lung cancer and ovarian carcinoma, Toxicol. Appl. Pharmacol. 209, 183–191 (2005).

    Article  PubMed  CAS  Google Scholar 

  48. H. Norppa, S. Bonassi, I.L. Hansteen, L. Hagmar, U. Strömberg, P. Rössner, P. Boffetta, C. Lindholm, S. Gundy, J. Lazutka, A. Cebulska-Wasilewska, E. Fabiánová, R.J. Srám, L.E. Knudsen, R. Barale and A. Fucic, Chromosomal aberrations and SCEs as biomarkers of cancer risk, Mutat. Res. 600, 37–45 (2006).

    PubMed  CAS  Google Scholar 

  49. P. Boffetta, O. van der Hel, H. Norppa, E. Fabianova, A. Fucic, S. Gundy, J. Lazutka, A. Cebulska-Wasilewska, D. Puskailerova, A. Znaor, Z. Kelecsenyi, J. Kurtinaitis, J. Rachtan, A. Forni, R. Vermeulen and S. Bonassi, Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. International Agency for Research on Cancer, Lyon, Am. J. Epidemiol. 165, 36–43 (2007).

    Article  PubMed  Google Scholar 

  50. N.I. Weijl, F.J. Cleton and S. Osanto, Free radicals and antioxidants in chemotherapy-induced toxicity, Cancer Treat. Rev. 23, 209–240 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. H. Mizutani, S. Tada-Oikawa, Y. Hiraku, M. Kojima and S. Kawanishi, Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide, Life Sci. 76, 1439–1453 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. P. M’Bemba-Meka, N. Lemieux and S.K. Chakrabarti, Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes, Arch. Toxicol. 81, 89–99 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. R.J. Preston, J.R. San Sebastian and A.F. McFee, The in vitro human lymphocyte assay for assessing the clastogenicity of chemical agents, Mutat. Res. 189, 175–183 (1987).

    Article  PubMed  CAS  Google Scholar 

  54. P.D.L. Lima, D.S. Leite, M.C. Vasconcellos, B.C. Cavalcanti, R.A. Santos, L.V. Costa-Lotufo, C. Pessoa, M.O. Moraes and R.R. Burbano, Genotoxic effects of aluminum chloride in cultured human lymphocytes treated in different phases of cell cycle, Food Chem. Toxicol. 45, 1154–1159 (2007).

    Article  PubMed  CAS  Google Scholar 

  55. C.X. Zhang and S.J. Lippard, New metal complexes as potential therapeutics, Curr. Opin. Chem. Biol. 7, 481–489 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. J. Kasparkova, O. Novakova, V. Marini, Y. Najajreh, D. Gibson, J.-M. Perez and V. Brabec, Activation of trans geometry in bifunctional mononuclear platinum complexes by a piperidine ligand. Mechanistic studies on antitumor action, J. Biol. Chem. 278, 47516–47525 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. V. Brabec and J. Kasparkova, Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs, Drug Resist. Updat. 8, 131–146 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. D. Anderson, J.B. Bishop, R.C. Garner, P. Ostrosky-Wegman and P.B. Selby, Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks, Mutat. Res. 330, 115–181 (1995).

    PubMed  CAS  Google Scholar 

  59. P. Sánchez-Suárez, P. Ostrosky-Wegman, F. Gallegos-Hernández, R. Peñarroja-Flores, J. Toledo-García, J.L. Bravo, E.R. del Castillo and L. Benítez-Bribiesca, DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer, Mutat. Res. 640, 8–15 (2008).

    PubMed  Google Scholar 

  60. E. Rojas, R. Montero, L.A. Herrera, M. Sordo, M.E. Gonsebatt, R. Rodriguez and P. Ostrosky-Wegman, Are mitotic index and lymphocyte proliferation kinetics reproducible endpoints in genetic toxicology testing? Mutat. Res. 282, 283–286 (1992).

    Article  PubMed  CAS  Google Scholar 

  61. A. Dhawan, M.A. Kayani, J.M. Parry, E. Parry and D. Anderson, Aneugenic and clastogenic effects of doxorubicin in human lymphocytes, Mutagenesis 18, 487–490 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. A. Fucic, A. Jazbec, A. Mijic, D. Seso-Simic and R. Tomek, Cytogenetic consequences after occupational exposure to antineoplastic drugs, Mutat. Res. 416, 59–66 (1998).

    PubMed  CAS  Google Scholar 

  63. S.W. Maluf and B. Erdtmann, Follow-up study of the genetic damage in lymphocytes of pharmacists and nurses handling antineoplastic drugs evaluated by cytokinesis-block micronuclei analysis and single cell gel electrophoresis assay, Mutat. Res. 471, 21–27 (2000).

    PubMed  CAS  Google Scholar 

  64. C.S. Djuzenova, D. Schindler, H. Stopper, H. Hoehn, M. Flentje and U. Oppitz, Identification of ataxia telangiectasia heterozygotes, a cancer-prone population, using the single-cell gel electrophoresis (Comet) assay, Lab. Invest. 79, 699–705 (1999).

    PubMed  CAS  Google Scholar 

  65. X. Lin, C.G. Wood, L. Shao, M. Huang, H. Yang, C.P. Dinney and X. Wu, Risk assessment of renal cell carcinoma using alkaline comet assay, Cancer 110, 282–288 (2007).

    Article  PubMed  Google Scholar 

  66. M.B. Schabath, M.R. Spitz, H.B. Grossman, K. Zhang, C.P. Dinney, P.J. Zheng and X. Wu, Genetic instability in bladder cancer assessed by the comet assay, J Natl Cancer Inst. 95, 540–547 (2003).

    Article  PubMed  CAS  Google Scholar 

  67. L. Shao, J. Lin, M. Huang, J.A. Ajani and X. Wu, Predictors of esophageal cancer risk: assessment of susceptibility to DNA damage using comet assay, Genes, Chromosomes Cancer 44, 415–422 (2005).

    Article  PubMed  CAS  Google Scholar 

  68. I. Witte, U. Plappert, H. de Wall and A. Hartmann, Genetic toxicity assessment: employing the best science for human safety evaluation part III: the comet assay as an alternative to in vitro clastogenicity tests for early drug candidate selection, Toxicol Sci. 97, 21–26 (2007).

    Article  PubMed  CAS  Google Scholar 

  69. A.R. Trzeciak, J. Kowalik, E. Małecka-Panas, J. Drzewoski, M. Wojewodzka, T. Iwanenko and J. Błasiak, Genotoxicity of chromium in human gastric mucosa cells and peripheral blood lymphocytes evaluated by the single cell gel electrophoresis (comet assay), Med. Sci. Monit. 6, 24–29 (2000).

    PubMed  CAS  Google Scholar 

  70. K. Sekihashi, A. Yamamoto, Y. Matsumura, S. Ueno, M. Watanabe-Akanuma, F. Kassie, S. Knasmüller, S. Tsuda and Y.F. Sasaki, Comparative investigation of multiple organs of mice and rats in the comet assay, Mutat. Res. 517, 53–75 (2002).

    PubMed  CAS  Google Scholar 

  71. J.P. Banath, M. Fushiki and P.L. Olive, Rejoining of DNA single- and double-strand breaks in human white blood cells exposed to ionizing radiation, Int. J. Radiat. Biol. 7, 649–660 (1998).

    Google Scholar 

  72. M. Dusinská, A. Collins, A. Kazimírová, M. Barancoková, V. Harrington, K. Volkovová, M. Staruchová, A. Horská, L. Wsólová, A. Kocan, J. Petrík, M. Machata, B. Ratcliffe and S. Kyrtopoulos, Genotoxic effects of asbestos in humans, Mutat. Res. 553, 91–102 (2004).

    PubMed  Google Scholar 

  73. A. Alapetite, A. Benoit, E. Moustacchi and A. Sarasin, The comet assay as a repair test for prenatal diagnosis of xeroderma pigmentosum and trichothiodystrophy, J. Invest. Dermatol. 108, 154–159 (1997).

    Article  PubMed  CAS  Google Scholar 

  74. J.S. Bertram, The molecular biology of cancer, Mol. Aspects Med. 21, 167–223 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Research and Projects Financing (FINEP) (grant no. 01.06.0941.00/CT-Saúde to Elisângela de Paula Silveira-Lacerda), by Coordination for the Advancement of Higher Education Staff (CAPES) through a fellowship to Alessandra de Santana Braga Barbosa Ribeiro, and by Brazilian National Counsel of Technological and Scientific Development (CNPq) through fellowships to Flávia de Castro Pereira (grant no. 381302/2007-5), Cesar Augusto Sam Tiago Vilanova-Costa (grant no. 381303/2007-1), and Aliny Pereira de Lima (grant no. 370646/2007-0).

Funding sources

There are not any financial or personal interests that might be viewed as an inappropriate influence to work presented. The attached manuscript, “Mutagenic and genotoxic effects of cis-(dichloro)tetraammineruthenium(III) chloride on human peripheral blood lymphocytes,” was completely financed by governmental and nonprofit institutions, Brazilian National Counsel of Technological and Scientific Development (CNPq), Research and Projects Financing (FINEP), and Coordination for the Advancement of Higher Education Staff (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra de Santana Braga Barbosa Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, A.S.B.B., da Silva, C.C., Pereira, F.C. et al. Mutagenic and Genotoxic Effects of cis-(Dichloro)tetraammineruthenium(III) Chloride on Human Peripheral Blood Lymphocytes. Biol Trace Elem Res 130, 249–261 (2009). https://doi.org/10.1007/s12011-009-8334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8334-9

Keywords

Navigation