Skip to main content
Log in

Speciation of Iodine in High Iodine Groundwater in China Associated with Goitre and Hypothyroidism

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodine intake affects the occurrence of disease in a population. Excessive iodine intake may be caused by a high iodine content of drinking water. Tap water in few locations in Europe contains up to 139 μg/L mostly bound to humic substances, probably leaching from marine sediments in the aquifers. Even higher iodine contents have been found in Chinese waters, previously shown to associate with goitre and hypothyroidism. The aims were to elucidate speciation of high iodine groundwater from deep wells in China and to compare with high iodine waters from Europe. Water was sampled from eight wells in five villages along Bohai Bay, China. Macro-molecules and low molecular weight (MW) substances were separated by size exclusion chromatography (high performance liquid chromatography, Superose 12 HR 10/30, buffer 0.1 M Tris, pH 7.0). Organic material was evaluated by A280 and iodine in fractions measured by the Ce/As method after alkaline incineration. Iodine content of well water varied from 135 to 880 μg/L (median 287 μg/L). The amount of organic material in water was low with A280, <1–5 mAU. The chromatographic traces were similar between samples: One peak of iodine eluted around K AV 0.65 corresponding to MW 5 kDa (humic substances) and one peak at V total (iodide/low MW substances). The fraction of iodine in macro-molecules, suggested to be humic substances, varied from 8% to 70% (median 27%). Iodine and peak absorbance were associated (p = 0.006). In conclusion, iodine in iodine-rich deep well water in northern China may have marine origin and may associate with humic substances, comparable to shallow well iodine-rich water in Europe. High iodine intake from iodine-rich water suggests the cause of endemic goitre and hypothyroidism in some areas in China being iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gaitan E, Dunn JT (1992) Epidemiology of iodine deficiency. Trends Endocrinol Metab 3:170–175

    Article  PubMed  CAS  Google Scholar 

  2. Laurberg P, Bulow Pedersen I, Knudsen N, Ovesen L, Andersen S (2001) Environmental iodine intake affects the type of non-malignant thyroid disease. Thyroid 11:457–469

    Article  PubMed  CAS  Google Scholar 

  3. Teng X, Shi X, Shan Z, Jin Y, Guan H, Li Y, Yang F, Wang W, Tong Y, Teng W (2008) Safe range of iodine intake levels: a comparative study of thyroid diseases in three women population cohorts with slightly different iodine intake levels. Biol Trace Elem Res 121:23–30

    Article  PubMed  CAS  Google Scholar 

  4. Baker DH (2004) Iodine toxicity and its amelioration. Exp Biol Med 229:473–478

    CAS  Google Scholar 

  5. Andersen S, Hvingel B, Kleinschmidt K, Jørgensen T, Laurberg P (2005) Changes in iodine excretion in 50–69-y-old denizens of an Arctic society in transition and iodine excretion as a biomarker of the frequency of consumption of traditional Inuit foods. Am J Clin Nutr 81:656–663

    PubMed  CAS  Google Scholar 

  6. Rasmussen LB, Ovesen L, Bülow I, Jørgensen T, Knudsen N, Laurberg P (2002) Dietary iodine intake and urinary iodine excretion in a Danish population. Br J Nutr 87:61–69

    Article  PubMed  CAS  Google Scholar 

  7. Pedersen KM, Laurberg P, Nøhr S, Jørgensen A, Andersen S (1999) Iodine in drinking water varies by more than 100-fold in Denmark, importance for iodine content of infant formulas. Eur J Endocrinol 140:400–403

    Article  PubMed  CAS  Google Scholar 

  8. Lu Y, Wang N, Zhu L, Wang G, Wu H, Kuang I, Zhu W (2005) Investigation of iodine concentration in salt, water and soil along the coast of Zhejiang, China. J Zhejiang University 6:1200–1205

    Article  CAS  Google Scholar 

  9. Felgentäger HJv, Gerth B, Fanghänel S (1983) Der jodgehalt des trinkwassers in der DDR und seine beziehung zur endemischen struma. Dtsch Gesundhwes 38:1178–1182

    Google Scholar 

  10. Hou X, Chai C, Qian Q, Liu G, Zhang Y, Wang K (1997) The study of iodine in Chinese total diets. Sci Total Environ 193:161–167

    Article  PubMed  CAS  Google Scholar 

  11. Fordyce FM, Johnson CC, Navaratna URB, Appleton JD, Dissanayake CB (2000) Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci Total Environ 263:127–141

    Article  PubMed  CAS  Google Scholar 

  12. Teng W, Shan Z, Teng X, Guan H, Li Y, Teng D, Jin Y, Yu X, Fan C, Chong W, Yang F, Dai H, Yu Y, Li J, Chen Y, Zhao D, Shi X, Hu F, Mao J, Gu X, Yang R, Tong Y, Wang W, Gao T, Li C (2006) Effect of iodine intake on thyroid diseases in China. N Eng J Med 354:2783–2793

    Article  CAS  Google Scholar 

  13. Pedersen IB, Knudsen N, Jørgensen T, Perrild H, Ovesen L, Laurberg P (2002) Large differences in incidences of overt hyper- and hypothyroidism associated with a small difference in iodine intake: a prospective comparative register-based population survey. J Clin Endocrinol Metab 87:4462–4469

    Article  CAS  Google Scholar 

  14. McClendon JF, Hathaway JC (1924) Inverse relation between iodine in food and drink and goitre, simple and exophthalmic. JAMA 82:1668–1672

    CAS  Google Scholar 

  15. Hales I, Reeve T, Myhill J, Dowda K (1969) Goitre: seasonal fluctuations in New South Wales. Med J Aust 1:378–380

    PubMed  CAS  Google Scholar 

  16. Mertz DP, Stelzer M, Heizmann M, Koch B (1973) Der jodgehalt des trinkwassers im endemischen kropfgebiet von Südbaden. Schweiz Med Wochenschr 103:550–556

    PubMed  CAS  Google Scholar 

  17. Li M, Liu DR, Qu CY, Zhang PY, Qian QD, Xhang CD, Jia QZ, Wang HX, Eastman CJ, Boyages SC (1987) Endemic goitre in central China caused by excessive iodine intake. Lancet 8553:257–259

    Google Scholar 

  18. Andersen S, Petersen SB, Laurberg P (2002) Iodine in drinking water in Denmark is bound in humic substances. Eur J Endocrinol 147:663–670

    Article  PubMed  CAS  Google Scholar 

  19. Zhao J, Chen Z, Maberly G (1998) Iodine-rich drinking water of natural origin in China. Lancet 352:1519

    Article  Google Scholar 

  20. Ma Y, Yu ZH, Lu TZ, Wang SY, Dong CF, Hu XY, Zhu HC, Liu RN, Yuan CY, Wang GQ, Cai HZ, Wang Q (1982) High-iodide endemic goiter. Chin Med J 95:692–696

    PubMed  CAS  Google Scholar 

  21. Fuge R, Johnson CC (1986) The geochemistry of iodine—a review. Environ Geochem Health 8:31–54

    Article  CAS  Google Scholar 

  22. Piccolo A, Nardi S, Concheri G (1996) Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere 33:595–602

    Article  PubMed  CAS  Google Scholar 

  23. Thurman EM (1985) Humic substances in groundwater. In: GR Aiken, DM Mcknight, RL Wershaw (eds.) Humic substances in soil, sediment, and water. Geochemistry, isolation, and characterization. Wiley, New York, pp 87–103

    Google Scholar 

  24. Calace N, D’Ascenzo G, Curtis DAS, Delfini M, Fraioli A, Petronio BM (1999) Chemical analysis of water of the Anticolana valley: isolation of humic compounds. Nephron 81:93–97

    Article  PubMed  CAS  Google Scholar 

  25. Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T (2001) Molecular size distribution of natural organic matter in raw and drinking waters. Chemosphere 45:865–873

    Article  PubMed  CAS  Google Scholar 

  26. Francois R (1987) Iodine in marine sedimentary humic substances. Sci Total Environ 62:341–342

    Article  CAS  Google Scholar 

  27. Fox P, Narayanaswamy K, Genz A, Drewes JE (2001) Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA. Water Sci Technol 43:343–350

    PubMed  CAS  Google Scholar 

  28. Andrews P (1965) Behavior of proteins related to their molecular weights over a wide range. Biochem J 96:595–606

    PubMed  CAS  Google Scholar 

  29. Wilson B, van Zyl A (1967) The estimation of iodine in thyroidal amino acids by alkaline ashing. S Afr J Med Sci 32:70–82

    PubMed  CAS  Google Scholar 

  30. Laurberg P (1987) Thyroxine and 3,5,3′-triiodothyronine content of thyroglobulin in thyroid needle aspirates in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metab 64:969–974

    Article  PubMed  CAS  Google Scholar 

  31. de Venanzi F, Briceno FPyH (1967) Centenido en Yodo del agua de bebida de la zona central norte de Venezuela (Iodine content of the drinking water of the north-central region of Venezuela). Acta Cient Venez 18:44–49

    PubMed  Google Scholar 

  32. Gbadebo AM, Oysanya TM (2005) Assessment of iodine deficiency and goitre incidence in parts of Yewa Area of Ogun State, Southwestern Nigeria. Environ Geochem Health 27:491–499

    Article  PubMed  CAS  Google Scholar 

  33. Pedersen KM, Laurberg P, Nøhr S, Jørgensen A, Andersen S (1999) Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas. Eur J Endocrinol 140:400–403

    Article  PubMed  CAS  Google Scholar 

  34. Pang XP, An OY, Su TS, Hershman JM (1988) Thyroid function of subjects with goitre and cretinism in an endemic goitre area of rural China after use of iodized salt. Acta Endocrinol 118:444–448

    PubMed  CAS  Google Scholar 

  35. Vartiainen T, Liimatainen A, Kauranen P (1987) The use of TSK size exclusion columns in determination of the quality and quantity of humus in raw waters and drinking waters. Sci Total Environ 62:75–84

    Article  CAS  Google Scholar 

  36. Tong W, Chaikoff IL (1955) Metabolism of 131I by the marine alga, Nereocystis leutkana. J Biol Chem 215:473–484

    PubMed  CAS  Google Scholar 

  37. Zhao Y, Sun P, Wang X, Cao L, Zhou Q, Li G, Gao Z (2008) Identification of crude oils in Bohai Sea by polycyclic aromatic hydrocarbon fingerprinting. Se Pu 26:43–49

    PubMed  Google Scholar 

  38. Andersen S, Pedersen KM, Iversen F, Terpling S, Gustenhoff P, Petersen SB, Laurberg P (2008) Naturally occurring iodine in humic substances in drinking water is bioavailable and determines population iodine intake. Br J Nutr 99:319–325

    PubMed  CAS  Google Scholar 

  39. Gaitan E (1990) Goitrogens in food and water. Ann Rev Nutr 10:21–35

    Article  CAS  Google Scholar 

  40. Laurberg P, Andersen S, Pedersen IB, Ovesen L, Knudsen N (2003) Humic substances in drinking water and the epidemiology of thyroid disease. Biofactors 19:145–153

    Article  PubMed  CAS  Google Scholar 

  41. Neve J (1992) Clinical implications of trace elements in endocrinology. Biol Trace Elem Res 32:173–85

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, S., Guan, H., Teng, W. et al. Speciation of Iodine in High Iodine Groundwater in China Associated with Goitre and Hypothyroidism. Biol Trace Elem Res 128, 95–103 (2009). https://doi.org/10.1007/s12011-008-8257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8257-x

Keywords

Navigation