Skip to main content
Log in

Preventive Role of Magnesium on Skeletal Muscle Ischemia–Reperfusion Injury—an Experimental Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study aims to explore whether Mg infusion has a preventive effect on ischemia–reperfusion injury in rats. A total of 20 Sprague-Dawley-type adult male rats were used. In group 1 (control), 0.9% isotonic solution was administered. In group 2 (experiment), magnesium sulfate (0.5 mg per 100 g) was administered. Ischemia was induced for 15 min for the two groups. Magnesium (Mg), interleukin 8 (IL-8), and malondialdehyde levels were analyzed in blood, while edema, neutrophil infiltration, eosinophilia, loss of striation, and nucleolization were evaluated in histopathological examination. Mg levels in the experiment group were higher than those in the control group after ischemia–reperfusion (p < 0.05). In the control group, postischemia and postreperfusion IL-8 values were higher than preoperative values (p < 0.05). As for eosinophilia and loss of striation values, these were higher in the experiment group after ischemia–reperfusion than the values in the control group (p < 0.05). Histopathologically, Mg infusion cannot prevent the tissue injury triggered in ischemia–reperfusion periods. Eosinophilia can be one of the major and earliest markers of ischemia–reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aktan AO, Yalçın AS (1998) Ischemia–reperfusion injury, reactive oxygen metabolites, and the surgeon. Turk J Med Sci 28:1–5

    Google Scholar 

  2. Akcil E, Tug T, Doseyen Z (2000) Antioxidant enzyme activities and trace element concentrations in ischemia reperfusion. Biol Trace Elem Res 76:13–17

    Article  PubMed  CAS  Google Scholar 

  3. Hori M, Gotoh K, Kitakaze M, Iwai K, Iwakura K, Sato H, Koretsune Y, Inoue M, Kitabatake A, Kamada T (1991) Role of oxygen-derived free radicals in myocardial edema and ischemia in coronary microvascular embolization. Circulation 84:828–840

    PubMed  CAS  Google Scholar 

  4. Belkin M, Brown RD, Wright JG (1988) A new quantitative spectrophotometric assay of ischemia–reperfusion injury in skeletal muscle. Am J Surg 156:83–86

    Article  PubMed  CAS  Google Scholar 

  5. Steinau HU (1988) Major limb replantation and postischemia syndrome: investigation of acute ischemia-induced myopathy and reperfusion injury, vol. 11. Springer, New York, pp 9–33

    Google Scholar 

  6. Sabido F, Milazzo VJ, Hobson RW, Duran WN (1994) Skeletal muscle ischemia–reperfusion injury: a review of endothelial cell–leukocyte interactions. J Invest Surg 7:39–47

    Article  PubMed  CAS  Google Scholar 

  7. Labbe R, Lindsay T, Walker PM (1987) The extent and distribution of skeletal muscle necrosis after graded periods of complete ischemia. J Vasc Surg 6:152–157

    Article  PubMed  CAS  Google Scholar 

  8. Petrasek PF, Homer-Vanniasinkam S, Walker PM (1994) Determinants of ischemic injury to skeletal muscle. J Vasc Surg 19:623–631

    PubMed  CAS  Google Scholar 

  9. Lu YT, Hellewell PG, Evans TW (1997) Ischemia–reperfusion lung injury: contributions of neutrophils and hydrostatic pressure. Am J Physiol 273:46–54

    Google Scholar 

  10. Moens AL, Claeys MJ, Timmermans JP, Vrints CJ (2005) Myocardial ischemia reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100:179–190

    Article  PubMed  CAS  Google Scholar 

  11. Mc Lean RM (1994) Magnesium and its therapeutic uses: a review. Am J Med 96:63–76

    Article  CAS  Google Scholar 

  12. Kharb S, Singh V (2000) Magnesium deficiency potentiates free radical production associated with myocardial infarction. J Assoc Phys India 48:484–485

    CAS  Google Scholar 

  13. Akkus I (1995) Serbest radikaller ve fizyopatolojik etkileri. Mimoza, Konya, pp 36–37

    Google Scholar 

  14. Christensen CW, Rieder M, Silverstein EL, Gencheff NF (1995) Magnesium sulphate reduces myocardial infarct size after coronary reperfusion in a canine model. Circulation 92:2617–2621

    PubMed  CAS  Google Scholar 

  15. Besogul Y, Tunerir B, Ozdemir C, Aslan R (2003) Magnesium-flush infusion into the aortic root just before reperfusion reduces the requirement for internal defibrillation and early post perfusion arrhythmias. J Int Med Res 31:202–209

    PubMed  CAS  Google Scholar 

  16. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719

    Article  PubMed  CAS  Google Scholar 

  17. Wasowicz M, Sobczynski P, Biczysko W, Szulc R (1999) Ultrastructural changes in the lung alveoli after cardiac surgical operations with the use of cardiopulmonary bypass. Pol J Pathol 50:189–196

    PubMed  CAS  Google Scholar 

  18. Kiss K, Stuhlinger HG, Glogar HD, Smetana R (2000) Magnesium in coronary artery disease—is there evidence? Wien Med Wochenshr 150:325–329

    CAS  Google Scholar 

  19. Gumina RJ, Jahangir A, Gross GJ, Terzic A (2000) Cardioprotection: emerging pharmacotherapy. Expert Opin Pharmacother 2:739–752

    Article  Google Scholar 

  20. Shen AC, Jennings RB (1972) Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol 67:441–452

    PubMed  CAS  Google Scholar 

  21. Oe H, Kuzuya T, Hoshida S, Nishida M, Hori M, Kamada T, Tada M (1994) Calcium overload and cardiac myocyte cell damage induced by arachidonate lipoxygenation. Am J Physiol 267:1396–1402

    Google Scholar 

  22. Rohmann S, Weygandt H, Minck KO (1995) Preischaemic as well as postischemic application of a Na+/H+ exchange inhibitor reduces infarct size in pigs. Cardiovasc Res 30:945–951

    PubMed  CAS  Google Scholar 

  23. Genovese A, Chiariello M, Latte S, de Alfieri W, Cacciapuoti AA, Condorelli M (1980) Effects of antiplatelet and calcium antagonist drugs on infarct size in rats. Acta Cardiol 35:419–427

    PubMed  CAS  Google Scholar 

  24. Toyooka T, Kamishiro T, Fumino H, Masaki T, Hosoda S (1984) Rabbit hearts for the critical evaluation of drugs to reduce the size of experimentally produced acute myocardial infarction. Jpn Heart J 25:623–632

    PubMed  CAS  Google Scholar 

  25. Hoff PT, Tamura Y, Lucchesi BR (1989) Cardioprotective effects of amlodipine in the ischemic-reperfused heart. Am J Cardiol 64:1011–1161

    Article  Google Scholar 

  26. Ely SW, Berne RM (1992) Protective effects of adenosine in myocardial ischemia. Circulation 85:893–904

    PubMed  CAS  Google Scholar 

  27. Herzog WR, Schlossberg MR, Mac Murdey KS, Edenbaum LR (1995) Timing of magnesium therapy affects experimental infarct size. Circulation 92:2622–2626

    PubMed  CAS  Google Scholar 

  28. Juarez U (2001) Magnesium in the treatment of acute myocardial infarction, review and controversies. Arch Cardial Mex 71:335–344

    CAS  Google Scholar 

  29. Govda RM, Khan IA (2004) Magnesium in treatment of acute myocardial infarction. Int J Cardiol 96:467–469

    Article  Google Scholar 

  30. Endoh M (2005) Magnesium and cardiovascular regulatory factor. Clin Calcium 15:162–174

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkerim Kasim Baltaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gormus, Z.I., Ergene, N., Toy, H. et al. Preventive Role of Magnesium on Skeletal Muscle Ischemia–Reperfusion Injury—an Experimental Study. Biol Trace Elem Res 127, 183–189 (2009). https://doi.org/10.1007/s12011-008-8228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8228-2

Keywords

Navigation